Lefèvre CM, Sharp JA, Nicholas KR. Evolution of Lactation: ancient origin and Extreme Adaptations of the Lactation System. Annu Rev Genomics Hum Genet. 2010;11(1):219–38. https://doi.org/10.1146/annurev-genom-082509-141806.
Article CAS PubMed Google Scholar
Oftedal OT. The Mammary Gland and Its Origin During Synapsid Evolution. J Mammary Gland Biol Neoplasia. Published online 2003:28.
Griffiths M. The Biology of the Monotremes. Elsevier; 2012.
Nicholas KR, Wilde CJ, Bird PH, Hendry KAK, Tregenza K, Warner B. Asynchronous concurrent secretion of milk proteins in the Tammar Wallaby (Macropus Eugenii). In: Wilde CJ, Peaker M, Knight CH, editors. Intercellular signalling in the mammary gland. Springer US; 1995. pp. 153–70. https://doi.org/10.1007/978-1-4615-1973-7_31.
Lockyer C, FAO R, Mammals FI, Norway A. B, Aug. Growth and energy budgets of large baleen whales from the southern hemisphere. XF2006134403 FAO Fish Ser. 1981;5:379–487.
Oftedal OT. Lactation in whales and dolphins: evidence of divergence between baleen- and toothed-species. J Mammary Gland Biol Neoplasia. 1997;2(3):205–30. https://doi.org/10.1023/a:1026328203526.
Article CAS PubMed Google Scholar
Nayak CM, Ramachandra CT, Kumar GM. A comprehensive review on composition of donkey milk in comparison to human, cow, buffalo, sheep, goat, camel and horse milk. Mysore J Agric Sci. 2020;54(3):42–50.
Goldman AS. Evolution of the mammary gland defense system and the ontogeny of the immune system. J Mammary Gland Biol Neoplasia. 2002;7(3):277–89. https://doi.org/10.1023/a:1022852700266.
Fergusson W. Breast feeding and later psychosocial adjustment. Paediatr Perinat Epidemiol. 1999;13(2):144–57. https://doi.org/10.1046/j.1365-3016.1999.00167.x.
Article CAS PubMed Google Scholar
Infant and young child feeding. World Health Organization, Published. June 9, 2021. Accessed December 17, 2021. https://www.who.int/news-room/fact-sheets/detail/infant-and-young-child-feeding
Major Depression. National Institute of Mental Health (NIMH). Accessed January 7., 2022. https://www.nimh.nih.gov/health/statistics/major-depression
Burt VK, Stein K. Epidemiology of depression throughout the female life cycle. J Clin Psychiatry. 2002;63(Suppl 7):9–15.
Kroska EB, Stowe ZN. Postpartum Depression. Obstet Gynecol Clin North Am. 2020;47(3):409–19. https://doi.org/10.1016/j.ogc.2020.05.001.
Cooper WO, Willy ME, Pont SJ, Ray WA. Increasing use of antidepressants in pregnancy. Am J Obstet Gynecol. 2007;196(6):544.e1-544.e5. doi:https://doi.org/10.1016/j.ajog.2007.01.033
Tsapakis EM, Gamie Z, Tran GT, et al. The adverse skeletal effects of selective serotonin reuptake inhibitors. Eur Psychiatry. 2012;27(3):156–69. https://doi.org/10.1016/j.eurpsy.2010.10.006.
Article CAS PubMed Google Scholar
Weaver SR, Fricke HP, Xie C, et al. Peripartum Fluoxetine reduces maternal trabecular bone after weaning and elevates mammary gland serotonin and PTHrP. Endocrinology. 2018;159(8):2850–62. https://doi.org/10.1210/en.2018-00279.
Article CAS PubMed PubMed Central Google Scholar
Weaver SR, Xie C, Charles JF, Hernandez LL. In utero and lactational exposure to the selective serotonin reuptake inhibitor fluoxetine compromises pup bones at weaning. Sci Rep. 2019;9(1):238. https://doi.org/10.1038/s41598-018-36497-8.
Article CAS PubMed PubMed Central Google Scholar
Rapport MM, Green AA, Page IH, Crystalline Serotonin. Science. 1948;108(2804):329–30. https://doi.org/10.1126/science.108.2804.329.
Article CAS PubMed Google Scholar
Erspamer V, Asero B. Identification of enteramine, the specific hormone of the enterochromaffin cell system, as 5-hydroxytryptamine. Nature. 1952;169(4306):800–1. https://doi.org/10.1038/169800b0.
Article CAS PubMed Google Scholar
Mawe GM, Hoffman JM. Serotonin signalling in the gut—functions, dysfunctions and therapeutic targets. Nat Rev Gastroenterol Hepatol. 2013;10(8):473–86. https://doi.org/10.1038/nrgastro.2013.105.
Article CAS PubMed PubMed Central Google Scholar
Azmitia EC. Serotonin neurons, neuroplasticity, and homeostasis of neural tissue. Neuropsychopharmacology. 1999;21(1):33–45. https://doi.org/10.1016/S0893-133X(99)00022-6.
Lucki I. The spectrum of behaviors influenced by serotonin. Biol Psychiatry. 1998;44(3):151–62. https://doi.org/10.1016/S0006-3223(98)00139-5.
Article CAS PubMed Google Scholar
Bertrand PP. Real-time measurement of serotonin release and motility in guinea pig ileum. J Physiol. 2006;577(2):689–704. https://doi.org/10.1113/jphysiol.2006.117804.
Article CAS PubMed PubMed Central Google Scholar
Yadav VK, Ryu JH, Suda N, et al. Lrp5 controls bone formation by inhibiting serotonin synthesis in the duodenum: an entero-bone endocrine axis. Cell. 2008;135(5):825–37. https://doi.org/10.1016/j.cell.2008.09.059.
Article CAS PubMed PubMed Central Google Scholar
Margolis KG, Stevanovic K, Li Z, et al. Pharmacological reduction of mucosal but not neuronal serotonin opposes inflammation in mouse intestine. Gut. 2014;63(6):928–37. https://doi.org/10.1136/gutjnl-2013-304901.
Article CAS PubMed Google Scholar
Matsuda M, Imaoka T, Vomachka AJ, et al. Serotonin regulates mammary Gland Development via an Autocrine-Paracrine Loop. Dev Cell. 2004;6(2):193–203. https://doi.org/10.1016/S1534-5807(04)00022-X.
Article CAS PubMed Google Scholar
Oldendorf W. Brain uptake of radiolabeled amino acids, amines, and hexoses after arterial injection. Am J Physiol-Leg Content. 1971;221(6):1629–39. https://doi.org/10.1152/ajplegacy.1971.221.6.1629.
Rahman MK, Nagatsu T, Sakurai T, Hori S, Abe M, Matsuda M. Effect of pyridoxal phosphate Deficiency on aromatic L-Amino acid decarboxylase activity with L-Dopa and L-5-Hydroxytryptophan as substrates in rats. Jpn J Pharmacol. 1982;32(5):803–11. https://doi.org/10.1254/jjp.32.803.
Article CAS PubMed Google Scholar
Grahame-Smith DG. Tryptophan hydroxylation in brain. Biochem Biophys Res Commun. 1964;16(6):586–92. https://doi.org/10.1016/0006-291X(64)90197-4.
Article CAS PubMed Google Scholar
Walther DJ, Peter JU, Bashammakh S, et al. Synthesis of serotonin by a second tryptophan hydroxylase isoform. Science. 2003;299(5603):76–6. https://doi.org/10.1126/science.1078197.
Article CAS PubMed Google Scholar
Yamaguchi Y, Hayashi C. Simple determination of high urinary excretion of 5-hydroxyindole-3-acetic acid with ferric chloride. Clin Chem. 1978;24(1):149–50. https://doi.org/10.1093/clinchem/24.1.149.
Article CAS PubMed Google Scholar
Klein DC, Weller JL. Indole Metabolism in the pineal gland: a circadian rhythm in N-Acetyltransferase. Science. 1970;169(3950):1093–5. https://doi.org/10.1126/science.169.3950.1093.
Article CAS PubMed Google Scholar
Illnerova H, Backström M, Sääf J, Wetterberg L, Vangbo B. Melatonin in rat pineal gland and serum; rapid parallel decline after light exposure at night. Neurosci Lett. 1978;9(2):189–93. https://doi.org/10.1016/0304-3940(78)90070-8.
Article CAS PubMed Google Scholar
Quay WB. Circadian rhythm in rat pineal serotonin and its modifications by estrous cycle and photoperiod. Gen Comp Endocrinol. 1963;3(5):473–9. https://doi.org/10.1016/0016-6480(63)90079-0.
Article CAS PubMed Google Scholar
Fernstrom JD. Role of precursor availability in control of monoamine biosynthesis in brain. Physiol Rev. 1983;63(2):484–546. https://doi.org/10.1152/physrev.1983.63.2.484.
Article CAS PubMed Google Scholar
Mondanelli G, Volpi C. The double life of serotonin metabolites: in the mood for joining neuronal and immune systems. Curr Opin Immunol. 2021;70:1–6. https://doi.org/10.1016/j.coi.2020.11.008.
Article CAS PubMed Google Scholar
Schwarcz R, Bruno JP, Muchowski PJ, Wu HQ. Kynurenines in the mammalian brain: when physiology meets pathology. Nat Rev Neurosci. 2012;13(7):465–77. https://doi.org/10.1038/nrn3257.
Article CAS PubMed PubMed Central Google Scholar
Braidy N, Grant R, Adams S, Brew BJ, Guillemin GJ. Mechanism for quinolinic acid cytotoxicity in human astrocytes and neurons. Neurotox Res. 2009;16(1):77–86. https://doi.org/10.1007/s12640-009-9051-z.
Article CAS PubMed Google Scholar
Oxenkrug GF. Tryptophan–kynurenine metabolism as a common mediator of genetic and environmental impacts in major depressive disorder: the Serotonin Hypothesis revisited 40 years later. Isr J Psychiatry Relat Sci. 2010;47(1):56–63.
PubMed PubMed Central Google Scholar
Bell C, Abrams J, Nutt D. Tryptophan depletion and its implications for psychiatry. Br J Psychiatry. 2001;178(5):399–405. https://doi.org/10.1192/bjp.178.5.399.
Article CAS PubMed Google Scholar
Filip M, Bader M. Overview on 5-HT receptors and their role in physiology and pathology of the central nervous system. Pharmacol Rep. 2009;61(5):761–77. https://doi.org/10.1016/S1734-1140(09)70132-X.
Article CAS PubMed Google Scholar
Peroutka SJ, Howell TA. The molecular evolution of G protein-coupled receptors: focus on 5-hydroxytryptamine receptors. Neuropharmacology. 1994;33(3):319–24. https://doi.org/10.1016/0028-3908(94)90060-4.
Comments (0)