Barceló FA. Predictive processing account of card sorting: fast proactive and reactive frontoparietal cortical dynamics during inference and learning of perceptual categories. J Cogn Neurosci. 2020;33(9):1636–56. https://doi.org/10.1162/jocn_a_01662.
Knight RT. Contribution of human hippocampal region to novelty detection. Nature. 1996;383:256–9. https://doi.org/10.1038/383256a0.
Article CAS PubMed Google Scholar
Knight RT. Decreased response to novel stimuli after prefrontal lesions in man. Electroencephalogr Clin Neurophysiol Evoked Potentials. 1984;59(1):9–20. https://doi.org/10.1016/0168-5597(84)90016-9.
Article CAS PubMed Google Scholar
Løvstad M, Funderud I, Lindgren M, Endestad T, Due-Tønnessen P, Meling T, et al. Contribution of subregions of human frontal cortex to novelty processing. J Cogn Neurosci. 2012;24(2):378–95. https://doi.org/10.1162/jocn_a_00099.
Mecklinger A, Ullsperger P. The P300 to novel and target events: a spatio-temporal dipole model analysis. Neurorep Int J Rapid Commun Res Neurosci. 1995;7(1):241–5.
Schröger E, Giard MH, Wolff C. Auditory distraction: event-related potential and behavioral indices. Clin Neurophysiol. 2000;111(8):1450–60. https://doi.org/10.1016/S1388-2457(00)00337-0.
Volpe U, Mucci A, Bucci P, Merlotti E, Galderisi S, Maj M. The cortical generators of P3a and P3b: a LORETA study. Brain Res Bull. 2007;73:220–30. https://doi.org/10.1016/j.brainresbull.2007.03.003.
Article CAS PubMed Google Scholar
Stuss D, Alexander M. Executive functions and the frontal lobes: a conceptual view. Psychol Res. 2000;63:289–98. https://doi.org/10.1007/s004269900007.
Article CAS PubMed Google Scholar
Badre D, Wagner AD. Selection, integration, and conflict monitoring: assessing the nature and generality of prefrontal cognitive control mechanisms. Neuron. 2004;41(3):473–87. https://doi.org/10.1016/S0896-6273(03)00851-1.
Article CAS PubMed Google Scholar
Saarikivi K, Putkinen V, Tervaniemi M, Huotilainen M. Cognitive flexibility modulates maturation and music-training-related changes in neural sound discrimination. Eur J Neurosci. 2016;44(2):1815–25. https://doi.org/10.1111/ejn.13176.
Barceló F, Periáñez JA, Knight RT. Think differently: a brain orienting response to task novelty. NeuroReport. 2002;13(15):1887–92. https://doi.org/10.1097/00001756-200210280-00011.
Wild-Wall N, Oades RD, Schmidt-Wessels M, Christiansen H, Falkenstein M. Neural activity associated with executive functions in adolescents with attention-deficit/hyperactivity disorder (ADHD). Int J Psychophysiol. 2009;74(1):19–27. https://doi.org/10.1016/j.ijpsycho.2009.06.003.
Polich J. Updating P300: an integrative theory of P3a and P3b. Clin Neurophysiol. 2007;118(10):2128–48. https://doi.org/10.1016/j.clinph.2007.04.019.
Article PubMed PubMed Central Google Scholar
Barceló F, Escera C, Corral MJ, Periáñez JA. Task switching and novelty processing activate a common neural network for cognitive control. J Cogn Neurosci. 2006;18(10):1734–48. https://doi.org/10.1162/jocn.2006.18.10.1734.
Casey BJ, Giedd JN, Thomas KM. Structural and functional brain development and its relation to cognitive development. Biol Psychol. 2000;54:241–57. https://doi.org/10.1016/S0301-0511(00)00058-2.
Article CAS PubMed Google Scholar
Sheridan M, Kharitonova M, Martin RE, Chatterjee A, Gabrieli JDE. Neural substrates of the development of cognitive control in children ages 5–10 years. J Cogn Neurosci. 2014;26:1840–50. https://doi.org/10.1162/jocn_a_00597.
Article PubMed PubMed Central Google Scholar
Miyake A, Friedman NP, Emerson MJ, Witzki AH, Howerter A, Wager TD. The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: a latent variable analysis. Cogn Psychol. 2000;41:49–100. https://doi.org/10.1006/cogp.1999.0734.
Article CAS PubMed Google Scholar
Lee K, Bull R, Ho RMH. Developmental changes in executive functioning. Child Dev. 2013;84(6):1933–53. https://doi.org/10.1111/cdev.12096.
Diamond A. Executive functions. Annu Rev Psychol. 2013;64:135–68. https://doi.org/10.1146/annurev-psych-113011-143750.
Rubia K, Russell T, Overmeyer S, Brammer MJ, Bullmore ET, Sharma T, et al. Mapping motor inhibition: conjunctive brain activations across different versions of go/no-go and stop tasks. Neuroimage. 2001;13(2):250–61. https://doi.org/10.1006/nimg.2000.0685.
Article CAS PubMed Google Scholar
Nigg JT, Wong MM, Martel MM, Jester JM, Puttler LI, Glass JM, et al. Poor response inhibition as a predictor of problem drinking and illicit drug use in adolescents at risk for alcoholism and other substance use disorders. J Am Acad Child Adolesc Psychiatry. 2006;45(4):468–75. https://doi.org/10.1097/01.chi.0000199028.76452.a9.
Barkley RA. Behavioral inhibition, sustained attention, and executive functions: constructing a unifying theory of ADHD. Psychol Bull. 1997;121(1):65–94. https://doi.org/10.1037/0033-2909.121.1.65.
Friedman NP, Miyake A. The relations among inhibition and interference control functions: a latent-variable analysis. J Exp Psychol Gen. 2004;133(1):101–35. https://doi.org/10.1037/0096-3445.133.1.101.
Nigg JT. On inhibition/disinhibition in developmental psychopathology: views from cognitive and personality psychology and a working inhibition taxonomy. Psychol Bull. 2000;126(2):220–46. https://doi.org/10.1037/0033-2909.126.2.220.
Article CAS PubMed Google Scholar
Posner MI, DiGirolamo GJ. Executive attention: conflict, target detection, and cognitive control. In: Parasuraman R, editor. The attentive brain. Cambridge: The MIT Press; 1998. p. 401–23.
Rueda MR, Fan J, McCandliss BD, Halparin JD, Gruber DB, Lercari LP, et al. Development of attentional networks in childhood. Neuropsychologia. 2004;42(8):1029–40. https://doi.org/10.1016/j.neuropsychologia.2003.12.012.
Stroop JR. Studies of interference in serial verbal reactions. J Exp Psychology. 1935;18(6):643–62. https://doi.org/10.1037/h0054651.
Hallett PE. Primary and secondary saccades to goals defined by instructions. Vis Res. 1978;18(10):1279–96. https://doi.org/10.1016/0042-6989(78)90218-3.
Article CAS PubMed Google Scholar
Eriksen BA, Eriksen CW. Effects of noise letters upon the identification of a target letter in a nonsearch task. Percept Psychophys. 1974;16:143–9. https://doi.org/10.3758/BF03203267.
Jersild AT. Mental set and shift. Archives of Psychology. 1927.
Spector A, Biederman I. Mental set and mental shift revisited. Am J Psychol. 1976;89(4):669–79. https://doi.org/10.2307/1421465.
Rogers RD, Monsell S. Costs of a predictible switch between simple cognitive tasks. J Exp Psychol Gen. 1995;124(2):207–31. https://doi.org/10.1037/0096-3445.124.2.207.
Grant DA, Berg EA. A behavioral analysis of degree of reinforcement and ease of shifting to new responses to new responses in a weigl-type card-sorting problem. J Exp Psychol. 1948;38:404–11. https://doi.org/10.1037/h0059831.
Article CAS PubMed Google Scholar
Brocki KC, Bohlin G. Executive functions in children aged 6 to 13: a dimensional and developmental study. Dev Neuropsychol. 2004;26:571–93. https://doi.org/10.1207/s15326942dn2602_3.
Welsh MC, Pennington BF, Groisser DB. A normative-developmental study of executive function: a window on prefrontal function in children. Dev Neuropsychol. 1991;7(2):131–49. https://doi.org/10.1080/87565649109540483.
Anderson V. Assessing executive functions in children: biological, psychological, and developmental considerations. Pediatr Rehabil. 2001;4(3):119–36.
Article CAS PubMed Google Scholar
Fernández García L, Merchán A, Phillips-Silver J, Daza González MT. Neuropsychological development of cool and hot executive functions between 6 and 12 years of age: a systematic review. Front Psychol. 2021. https://doi.org/10.3389/fpsyg.2021.687337.
Article PubMed PubMed Central Google Scholar
Booth JR, Burman DD, Meyer JR, Lei Z, Trommer BL, Davenport ND, et al. Neural development of selective attention and response inhibition. Neuroimage. 2003;20(2):737–51. https://doi.org/10.1016/S1053-8119(03)00404-X.
Bunge SA, Dudukovic NM, Thomason ME, Vaidya CJ, Gabrieli JDE. Immature frontal lobe contributions to cognitive control in children: evidence from fMRI. Neuron. 2002;33(2):301–11. https://doi.org/10.1016/S0896-6273(01)00583-9.
Article CAS PubMed PubMed Central Google Scholar
Durston S, Thomas KM, Yang Y, Uluğ AM, Zimmerman RD, Casey B. A neural basis for the development of inhibitory control. Dev Sci. 2002;5:F9–16. https://doi.org/10.1111/1467-7687.00235.
Comments (0)