Ross R. Atherosclerosis–an inflammatory disease. N Engl J Med. 1999;340(2):115–26.
Article CAS PubMed Google Scholar
Ross R, Glomset JA. Atherosclerosis and the arterial smooth muscle cell: proliferation of smooth muscle is a key event in the genesis of the lesions of atherosclerosis. Science. 1973;180(4093):1332–9.
Article CAS PubMed Google Scholar
Marian AJ. Causes and consequences of DNA double-stranded breaks in cardiovascular disease. Mol Cell Biochem. 2025;480(4):2043–64.
Article CAS PubMed Google Scholar
Lindahl T, Barnes DE. Repair of endogenous DNA damage. Cold Spring Harb Symp Quant Biol. 2000;65:127–33.
Article CAS PubMed Google Scholar
Tubbs A, Nussenzweig A. Endogenous DNA damage as a source of genomic instability in cancer. Cell. 2017;168(4):644–56.
Article CAS PubMed PubMed Central Google Scholar
Kratz A, Kim M, Kelly MR, et al. A multi-scale map of protein assemblies in the DNA damage response. Cell Syst. 2023;14(6):447–63. e448.
Article CAS PubMed PubMed Central Google Scholar
Lei Y, VanPortfliet JJ, Chen YF, et al. Cooperative sensing of mitochondrial DNA by ZBP1 and cGAS promotes cardiotoxicity. Cell. 2023;186(14):3013–32. e3022.
Article PubMed PubMed Central Google Scholar
Zhang Z, Yuan B, Bao M, Lu N, Kim T, Liu YJ. The helicase DDX41 senses intracellular DNA mediated by the adaptor STING in dendritic cells. Nat Immunol. 2011;12(10):959–65.
Article CAS PubMed PubMed Central Google Scholar
Unterholzner L, Keating SE, Baran M, et al. IFI16 is an innate immune sensor for intracellular DNA. Nat Immunol. 2010;11(11):997–1004.
Article CAS PubMed PubMed Central Google Scholar
Gray K, Kumar S, Figg N, et al. Effects of DNA damage in smooth muscle cells in atherosclerosis. Circ Res. 2015;116(5):816–26.
Article CAS PubMed Google Scholar
Shah A, Gray K, Figg N, Finigan A, Starks L, Bennett M. Defective base excision repair of oxidative DNA damage in vascular smooth muscle cells promotes atherosclerosis. Circulation. 2018;138(14):1446–62.
Article CAS PubMed PubMed Central Google Scholar
Mercer JR, Cheng KK, Figg N, et al. DNA damage links mitochondrial dysfunction to atherosclerosis and the metabolic syndrome. Circ Res. 2010;107(8):1021–31.
Article CAS PubMed PubMed Central Google Scholar
Ihling C, Haendeler J, Menzel G, et al. Co-expression of p53 and MDM2 in human atherosclerosis: implications for the regulation of cellularity of atherosclerotic lesions. J Pathol. 1998;185(3):303–12.
Article CAS PubMed Google Scholar
Cosentino K, Hertlein V, Jenner A, et al. The interplay between BAX and BAK tunes apoptotic pore growth to control mitochondrial-DNA-mediated inflammation. Mol Cell. 2022;82(5):933–49. e939.
Article CAS PubMed PubMed Central Google Scholar
Riley JS, Tait SW. Mitochondrial DNA in inflammation and immunity. EMBO Rep. 2020;21(4):e49799.
Article CAS PubMed PubMed Central Google Scholar
Marchi S, Guilbaud E, Tait SWG, Yamazaki T, Galluzzi L. Mitochondrial control of inflammation. Nat Rev Immunol. 2023;23(3):159–73.
Article CAS PubMed Google Scholar
Linders AN, Dias IB, Lopez Fernandez T, Tocchetti CG, Bomer N, Van der Meer P. A review of the pathophysiological mechanisms of doxorubicin-induced cardiotoxicity and aging. NPJ Aging. 2024;10(1):9.
Article PubMed PubMed Central Google Scholar
Dong M, Fitzgerald KA. DNA-sensing pathways in health, autoinflammatory and autoimmune diseases. Nat Immunol. 2024;25(11):2001–14.
Article CAS PubMed Google Scholar
Hemmi H, Takeuchi O, Kawai T, et al. A toll-like receptor recognizes bacterial DNA. Nature. 2000;408(6813):740–5.
Article CAS PubMed Google Scholar
Sharma M, de Alba E. Assembly mechanism of the inflammasome sensor AIM2 revealed by single molecule analysis. Nat Commun. 2023;14(1):7957.
Article CAS PubMed PubMed Central Google Scholar
Matyszewski M, Morrone SR, Sohn J. Digital signaling network drives the assembly of the AIM2-ASC inflammasome. Proc Natl Acad Sci U S A. 2018;115(9):E1963–72.
Article CAS PubMed PubMed Central Google Scholar
Zhang T, Yin C, Boyd DF, et al. Influenza virus Z-RNAs induce ZBP1-Mediated necroptosis. Cell. 2020;180(6):1115–29. e1113.
Article CAS PubMed PubMed Central Google Scholar
Olcum M, Rouhi L, Fan S, et al. PANoptosis is a prominent feature of desmoplakin cardiomyopathy. J Cardiovasc Aging. 2023;3(1):1–20. https://doi.org/10.20517/jca.2022.34
Singh RS, Vidhyasagar V, Yang S, et al. DDX41 is required for cGAS-STING activation against DNA virus infection. Cell Rep. 2022;39(8):110856.
Article CAS PubMed PubMed Central Google Scholar
Almine JF, O’Hare CA, Dunphy G, et al. IFI16 and cGAS cooperate in the activation of STING during DNA sensing in human keratinocytes. Nat Commun. 2017;8:14392.
Article CAS PubMed PubMed Central Google Scholar
Briard B, Place DE, Kanneganti TD. DNA sensing in the innate immune response. Physiol (Bethesda). 2020;35(2):112–24.
Sun L, Wu J, Du F, Chen X, Chen ZJ. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type i interferon pathway. Science. 2013;339(6121):786–91.
Article CAS PubMed Google Scholar
Yu L, Liu P. Cytosolic DNA sensing by cGAS: regulation, function, and human diseases. Signal Transduct Target Ther. 2021;6(1):170.
Article CAS PubMed PubMed Central Google Scholar
Chen YA, Shen YL, Hsia HY, Tiang YP, Sung TL, Chen LY. Extrachromosomal telomere repeat DNA is linked to ALT development via cGAS-STING DNA sensing pathway. Nat Struct Mol Biol. 2017;24(12):1124–31.
Article CAS PubMed Google Scholar
Civril F, Deimling T, de Oliveira Mann CC, et al. Structural mechanism of cytosolic DNA sensing by cGAS. Nature. 2013;498(7454):332–7.
Article CAS PubMed PubMed Central Google Scholar
Zhao C, Ma Y, Zhang M, et al. Polyamine metabolism controls B-to-Z DNA transition to orchestrate DNA sensor cGAS activity. Immunity. 2023;56(11):2508–22. e2506.
Comments (0)