Self-DNA by Activating the CGAS-STING1 Pathway Contributes to the Pathogenesis of Atherosclerosis

Ross R. Atherosclerosis–an inflammatory disease. N Engl J Med. 1999;340(2):115–26.

Article  CAS  PubMed  Google Scholar 

Ross R, Glomset JA. Atherosclerosis and the arterial smooth muscle cell: proliferation of smooth muscle is a key event in the genesis of the lesions of atherosclerosis. Science. 1973;180(4093):1332–9.

Article  CAS  PubMed  Google Scholar 

Marian AJ. Causes and consequences of DNA double-stranded breaks in cardiovascular disease. Mol Cell Biochem. 2025;480(4):2043–64.

Article  CAS  PubMed  Google Scholar 

Lindahl T, Barnes DE. Repair of endogenous DNA damage. Cold Spring Harb Symp Quant Biol. 2000;65:127–33.

Article  CAS  PubMed  Google Scholar 

Tubbs A, Nussenzweig A. Endogenous DNA damage as a source of genomic instability in cancer. Cell. 2017;168(4):644–56.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kratz A, Kim M, Kelly MR, et al. A multi-scale map of protein assemblies in the DNA damage response. Cell Syst. 2023;14(6):447–63. e448.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lei Y, VanPortfliet JJ, Chen YF, et al. Cooperative sensing of mitochondrial DNA by ZBP1 and cGAS promotes cardiotoxicity. Cell. 2023;186(14):3013–32. e3022.

Article  PubMed  PubMed Central  Google Scholar 

Zhang Z, Yuan B, Bao M, Lu N, Kim T, Liu YJ. The helicase DDX41 senses intracellular DNA mediated by the adaptor STING in dendritic cells. Nat Immunol. 2011;12(10):959–65.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Unterholzner L, Keating SE, Baran M, et al. IFI16 is an innate immune sensor for intracellular DNA. Nat Immunol. 2010;11(11):997–1004.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gray K, Kumar S, Figg N, et al. Effects of DNA damage in smooth muscle cells in atherosclerosis. Circ Res. 2015;116(5):816–26.

Article  CAS  PubMed  Google Scholar 

Shah A, Gray K, Figg N, Finigan A, Starks L, Bennett M. Defective base excision repair of oxidative DNA damage in vascular smooth muscle cells promotes atherosclerosis. Circulation. 2018;138(14):1446–62.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mercer JR, Cheng KK, Figg N, et al. DNA damage links mitochondrial dysfunction to atherosclerosis and the metabolic syndrome. Circ Res. 2010;107(8):1021–31.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ihling C, Haendeler J, Menzel G, et al. Co-expression of p53 and MDM2 in human atherosclerosis: implications for the regulation of cellularity of atherosclerotic lesions. J Pathol. 1998;185(3):303–12.

Article  CAS  PubMed  Google Scholar 

Cosentino K, Hertlein V, Jenner A, et al. The interplay between BAX and BAK tunes apoptotic pore growth to control mitochondrial-DNA-mediated inflammation. Mol Cell. 2022;82(5):933–49. e939.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Riley JS, Tait SW. Mitochondrial DNA in inflammation and immunity. EMBO Rep. 2020;21(4):e49799.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Marchi S, Guilbaud E, Tait SWG, Yamazaki T, Galluzzi L. Mitochondrial control of inflammation. Nat Rev Immunol. 2023;23(3):159–73.

Article  CAS  PubMed  Google Scholar 

Linders AN, Dias IB, Lopez Fernandez T, Tocchetti CG, Bomer N, Van der Meer P. A review of the pathophysiological mechanisms of doxorubicin-induced cardiotoxicity and aging. NPJ Aging. 2024;10(1):9.

Article  PubMed  PubMed Central  Google Scholar 

Dong M, Fitzgerald KA. DNA-sensing pathways in health, autoinflammatory and autoimmune diseases. Nat Immunol. 2024;25(11):2001–14.

Article  CAS  PubMed  Google Scholar 

Hemmi H, Takeuchi O, Kawai T, et al. A toll-like receptor recognizes bacterial DNA. Nature. 2000;408(6813):740–5.

Article  CAS  PubMed  Google Scholar 

Sharma M, de Alba E. Assembly mechanism of the inflammasome sensor AIM2 revealed by single molecule analysis. Nat Commun. 2023;14(1):7957.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Matyszewski M, Morrone SR, Sohn J. Digital signaling network drives the assembly of the AIM2-ASC inflammasome. Proc Natl Acad Sci U S A. 2018;115(9):E1963–72.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang T, Yin C, Boyd DF, et al. Influenza virus Z-RNAs induce ZBP1-Mediated necroptosis. Cell. 2020;180(6):1115–29. e1113.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Olcum M, Rouhi L, Fan S, et al. PANoptosis is a prominent feature of desmoplakin cardiomyopathy. J Cardiovasc Aging. 2023;3(1):1–20. https://doi.org/10.20517/jca.2022.34

Singh RS, Vidhyasagar V, Yang S, et al. DDX41 is required for cGAS-STING activation against DNA virus infection. Cell Rep. 2022;39(8):110856.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Almine JF, O’Hare CA, Dunphy G, et al. IFI16 and cGAS cooperate in the activation of STING during DNA sensing in human keratinocytes. Nat Commun. 2017;8:14392.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Briard B, Place DE, Kanneganti TD. DNA sensing in the innate immune response. Physiol (Bethesda). 2020;35(2):112–24.

CAS  Google Scholar 

Sun L, Wu J, Du F, Chen X, Chen ZJ. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type i interferon pathway. Science. 2013;339(6121):786–91.

Article  CAS  PubMed  Google Scholar 

Yu L, Liu P. Cytosolic DNA sensing by cGAS: regulation, function, and human diseases. Signal Transduct Target Ther. 2021;6(1):170.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen YA, Shen YL, Hsia HY, Tiang YP, Sung TL, Chen LY. Extrachromosomal telomere repeat DNA is linked to ALT development via cGAS-STING DNA sensing pathway. Nat Struct Mol Biol. 2017;24(12):1124–31.

Article  CAS  PubMed  Google Scholar 

Civril F, Deimling T, de Oliveira Mann CC, et al. Structural mechanism of cytosolic DNA sensing by cGAS. Nature. 2013;498(7454):332–7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhao C, Ma Y, Zhang M, et al. Polyamine metabolism controls B-to-Z DNA transition to orchestrate DNA sensor cGAS activity. Immunity. 2023;56(11):2508–22. e2506.

Article 

Comments (0)

No login
gif