Whole-genome assembly and comparative genomic analyses provide insight into the endophytic lifestyle of

Bailey BA, Strem MD, Wood D (2009) Trichoderma species form endophytic associations within Theobroma cacao trichomes. Mycol Res. https://doi.org/10.1016/j.mycres.2009.09.004

Article  PubMed  Google Scholar 

Beier S, Thiel T, Münch T et al (2017) MISA-web: a web server for microsatellite prediction. Bioinformatics. https://doi.org/10.1093/bioinformatics/btx198

Article  PubMed  PubMed Central  Google Scholar 

Bhargavi SD, Praveen VK, Anil Kumar M, Savitha J (2018) Comparative study on whole genome sequences of aspergillus terreus (Soil Fungus) and Diaporthe ampelina (Endophytic Fungus) with reference to lovastatin production. Curr Microbiol. https://doi.org/10.1007/s00284-017-1353-4

Article  PubMed  Google Scholar 

Bischof RH, Ramoni J, Seiboth B (2016) Cellulases and beyond: the first 70 years of the enzyme producer trichoderma reesei. Microb Cell Fact. https://doi.org/10.1186/s12934-016-0507-6

Article  PubMed  PubMed Central  Google Scholar 

Boetzer M, Henkel CV, Jansen HJ et al (2011) Scaffolding pre-assembled contigs using SSPACE. Bioinformatics. https://doi.org/10.1093/bioinformatics/btq683

Article  PubMed  Google Scholar 

Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for illumina sequence data. Bioinformatics 30:2114–2120. https://doi.org/10.1093/bioinformatics/btu170

Article  PubMed  PubMed Central  CAS  Google Scholar 

Chaverri P, Branco-Rocha F, Jaklitsch W et al (2015) Systematics of the Trichoderma harzianum species complex and the re-identification of commercial biocontrol strains. Mycologia. https://doi.org/10.3852/14-147

Article  PubMed  PubMed Central  Google Scholar 

Cocaign A, Bui LC, Silar P et al (2013) Biotransformation of trichoderma spp. and their tolerance to aromatic amines, a major class of pollutants. Appl Environ Microbiol. https://doi.org/10.1128/AEM.00989-13

Article  PubMed  PubMed Central  Google Scholar 

Druzhinina IS, Chenthamara K, Zhang J et al (2018) Massive lateral transfer of genes encoding plant cell wall-degrading enzymes to the mycoparasitic fungus trichoderma from its plant-associated hosts. PLoS Genet. https://doi.org/10.1371/journal.pgen.1007322

Article  PubMed  PubMed Central  Google Scholar 

Gajera H, Domadiya R, Patel S et al (2013) Molecular mechanism of Trichoderma as bio-control agents against phytopathogen system-a review. Curr Res Microbiol Biotechnol 1(4):133–142

Google Scholar 

Gal-Hemed I, Atanasova L, Komon-Zelazowska M et al (2011) Marine isolates of trichoderma spp. as potential halotolerant agents of biological control for arid-zone agriculture. Appl Environ Microbiol. https://doi.org/10.1128/AEM.00541-11

Article  PubMed  PubMed Central  Google Scholar 

Guzmán-Guzmán P, Porras-Troncoso MD, Olmedo-Monfil V, Herrera-Estrella A (2019) Trichoderma species: versatile plant symbionts. Phytopathology. https://doi.org/10.1094/PHYTO-07-18-0218-RVW

Article  PubMed  Google Scholar 

Hatvani L, Homa M, Chenthamara K et al (2019) Agricultural systems as potential sources of emerging human mycoses caused by Trichoderma: A successful, common phylotype of Trichoderma longibrachiatum in the frontline. FEMS Microbiol Lett. https://doi.org/10.1093/femsle/fnz246

Article  PubMed  Google Scholar 

Horta MAC, Filho JAF, Murad NF et al (2018) Network of proteins, enzymes and genes linked to biomass degradation shared by trichoderma species. Sci Rep. https://doi.org/10.1038/s41598-018-19671-w

Article  PubMed  PubMed Central  Google Scholar 

Jaroszuk-ściseł J, Tyśkiewicz R, Nowak A et al (2019) Phytohormones (auxin, gibberellin) and ACC deaminase in vitro synthesized by the mycoparasitic trichoderma DEMTKZ3A0 strain and changes in the level of auxin and plant resistance markers in wheat seedlings inoculated with this strain conidia. Int J Mol Sci. https://doi.org/10.3390/ijms20194923

Article  PubMed  PubMed Central  Google Scholar 

Jin S, Alberti F (2025) Advances in the discovery and study of trichoderma natural products for biological control applications. Nat Prod Rep. https://doi.org/10.1039/D5NP00017C

Article  PubMed  PubMed Central  Google Scholar 

Katoch M, Singh D, Kapoor KK, Vishwakarma RA (2019) Trichoderma lixii (IIIM-B4), an endophyte of Bacopa monnieri L. producing peptaibols. BMC Microbiol. https://doi.org/10.1186/s12866-019-1477-8

Article  PubMed  PubMed Central  Google Scholar 

Katti MV, Ranjekar PK, Gupta VS (2001) Differential distribution of simple sequence repeats in eukaryotic genome sequences. Mol Biol Evol. https://doi.org/10.1093/oxfordjournals.molbev.a003903

Article  PubMed  Google Scholar 

Keller NP (2019) Fungal secondary metabolism: regulation, function and drug discovery. Nat Rev Microbiol. https://doi.org/10.1038/s41579-018-0121-1

Article  PubMed  PubMed Central  Google Scholar 

Khan RAA, Najeeb S, Mao Z et al (2020) Bioactive secondary metabolites from Trichoderma spp. against phytopathogenic bacteria and root-knot nematode. Microorganisms. https://doi.org/10.3390/microorganisms8030401

Article  PubMed  PubMed Central  Google Scholar 

Kredics L, Chen L, Kedves O et al (2018) Molecular tools for monitoring trichoderma in agricultural environments. Front Microbiol. https://doi.org/10.3389/fmicb.2018.01599

Article  PubMed  PubMed Central  Google Scholar 

Kubicek CP, Herrera-Estrella A, Seidl-Seiboth V et al (2011) Comparative genome sequence analysis underscores mycoparasitism as the ancestral life style of Trichoderma. Genome Biol. https://doi.org/10.1186/gb-2011-12-4-r40

Article  PubMed  PubMed Central  Google Scholar 

Kubicek CP, Starr TL, Glass NL (2014) Plant cell wall-degrading enzymes and their secretion in plant-pathogenic fungi. Annu Rev Phytopathol. https://doi.org/10.1146/annurev-phyto-102313-045831

Article  PubMed  Google Scholar 

Kumar V, Dwivedi SK (2021) Bioremediation mechanism and potential of copper by actively growing fungus trichoderma lixii CR700 isolated from electroplating wastewater. J Environ Manage. https://doi.org/10.1016/j.jenvman.2020.111370

Article  PubMed  Google Scholar 

Levasseur A, Drula E, Lombard V et al (2013) Expansion of the enzymatic repertoire of the CAZy database to integrate auxiliary redox enzymes. Biotechnol Biofuels. https://doi.org/10.1186/1754-6834-6-41

Article  PubMed  PubMed Central  Google Scholar 

Li Z, Xiong K, Wen W et al (2023) Functional endophytes regulating plant secondary metabolism: current status, prospects and applications. Int J Mol Sci. https://doi.org/10.3390/ijms24021153

Article  PubMed  PubMed Central  Google Scholar 

Lombard V, Golaconda Ramulu H, Drula E et al (2014) The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. https://doi.org/10.1093/nar/gkt1178

Article  PubMed  PubMed Central  Google Scholar 

Martinez D, Berka RM, Henrissat B et al (2008) Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nat Biotechnol. https://doi.org/10.1038/nbt1403

Article  PubMed  Google Scholar 

Moriya Y, Itoh M, Okuda S et al (2007) KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res. https://doi.org/10.1093/nar/gkm321

Article  PubMed  PubMed Central  Google Scholar 

Mukherjee PK, Horwitz BA, Kenerley CM (2012) Secondary metabolism in Trichoderma - a genomic perspective. Microbiology. https://doi.org/10.1099/mic.0.053629-0

Article  PubMed  Google Scholar 

Omara AED, El-maghraby FM (2023) Novel bioformulations with Trichoderma lixii to improve the growth dynamics and biocontrol of the Cowpea Damping-Off disease. Microbiol

Comments (0)

No login
gif