Sorptive properties of hydrogel dressings and their antimicrobial action after saturation with tetracyclines

Anghel, I., Holban, A. M., Grumezescu, A. M., Andronescu, E., Ficai, A., Anghel, A. G., Maganu, M., Lazǎr, V., & Chifiriuc, M. C. (2012). Modified wound dressing with phyto-nanostructured coating to prevent staphylococcal and pseudomonal biofilm development. Nanoscale Research Letters, 7, 690.

Balcucho, J., Narváez, D. M., & Castro-Mayorga, J. L. (2020). Antimicrobial and biocompatible polycaprolactone and copper oxide nanoparticle wound dressings against methicillin-resistant Staphylococcus aureus. Nanomaterials, 10(9), 1692.

Beganovic, S., Rückert-Reed, C., Sucipto, H., Shu, H. W., Gläser, L., Patschkowski, T., Struck, B., Kalinowski, J., Luzhetskyy, A., & Wittmann, C. (2023). Systems biology of industrial oxytetracycline production in Streptomyces rimosus: The secrets of a mutagenized hyperproducer. Microbial Cell Factories, 22, 222.

Boateng, J. S., Matthews, K. H., Stevens, H. N., & Eccleston, G. M. (2008). Wound healing dressings and drug delivery systems: A review. Journal of Pharmaceutical Sciences, 97(8), 2892–2923.

Boateng, J. S., Pawar, H. V., & Tetteh, J. (2013). Polyox and carrageenan based composite film dressing containing anti-microbial and anti-inflammatory drugs for effective wound healing. International Journal of Pharmaceutics, 441(1–2), 181–191.

Bowler, P. G., Duerden, B. I., & Armstrong, D. G. (2001). Wound microbiology and associated approaches to wound management. Clinical Microbiology Reviews, 14(2), 244–269.

Bukartyk, M. M., Nosova, N. G., Maikovych, O. V., Bukartyk, N. M., Stasiuk, A. V., Dron, I. A., Fihurka, N. V., Khomyak, S. V., Ostapiv, D. D., Vlizlo, V. V., Samaryk, V. Y., & Varvarenko, S. M. (2022). Preperation and research of properties of combined alginate/gelatin hydrogels. Journal of Chemistry and Technologies, 30(1), 11–20.

Chopra, I., & Roberts, M. (2001). Tetracycline antibiotics: Mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiology and Molecular Biology Reviews, 65(2), 232–260.

da Silva, L. P., Reis, R. L., Correlo, V. M., & Marques, A. P. (2019). Hydrogel-based strategies to advance therapies for chronic skin wounds. Annual Review of Biomedical Engineering, 21, 145–169.

de Oliveira Gonzalez, A. C., Costa, T. F., de Araújo Andrade, Z., & Medrado, A. R. A. P. (2016). Wound healing – a literature review. Anais Brasileiros de Dermatologia, 91(5), 614–620.

Dron, I. A., Nosova, N. H., Yakoviv, M. V., Bukartyk, M. M., Stasyuk, A. V., Varvarenko, S. M., Bordenyuk, O. Y., Maykovych, O. V., Fihurka, N. V., Samaryk, V. Y., & Voronov, S. A. (2020a). Sposib otrymannia antyseptychnoyi hidrohelevoyi pov'yazky [Method of obtaining an antiseptic hydrophilic bandage]. Patent. UA No. 143783 U Byuleten’ No. 15, 10.08.2020 (in Ukrainian).

Dron, I. A., Stasyuk, A. V., Bukartyk, M. M., Luhova, Y. R., & Samaryk, V. Y. (2020b). Formuvannia hidroheliv na osnovi pektynu z riznym stupenem esteryfikatsiyi [Formation of hydrogels based on pectin with various degrees of esterification]. Khimiya, Tekhnolohiya Rechovyn ta yikh Zastosuvannya, 3(1), 239–244 (in Ukrainian).

Esposito, M. R., Guillari, A., & Angelillo, I. F. (2017). Knowledge, attitudes, and practice on the prevention of central line-associated bloodstream infections among nurses in oncological care: A cross-sectional study in an area of Southern Italy. PLoS One, 12(6), e0180473.

Gadaime, N. K. R., Mydin, R. B. S. M. N., Govindasamy, G. A., Bustami, Y., & Sreekantan, S. (2025). Advanced hydrogel dressing with zinc oxide-copper oxide nanocomposite for effective wound management: Mechanochemistry, antibacterial efficacy, cytocompatibility and wound healing potentials. Journal of Polymers and the Environment, 33, 1601–1614.

Galecio, J. S., Escudero, E., Corrales, J. C., García-Romero E., de la Fe, C., Hernandis, V., & Marinet, P. (2022). Susceptibility of caprine mastitis pathogens to tildipirosin, gamithromycin, oxytetracycline, and danofloxacin: Effect of serum on the in vitro potency of current macrolides. World Journal of Microbiology and Biotechnology, 38, 221.

Gashaw, B., Yizengaw, E., Nibret, E., Workineh, A., & Tilahun, F. (2024). Case notification of cutaneous leishmaniasis at different elevations in the North-Central Ethiopia from 2018 тo 2022. Iranian Journal of Parasitology, 19(3), 349–357.

Gbedema, S., Emelia, K., Francis, A., Kofi, A., & Eric, W. (2010). Wound healing properties and kill kinetics of Clerodendron splendens G. Don, a Ghanaian wound healing plant. Pharmacognosy Research, 2(2), 63–68.

Ghomi, E. R., Khalili, S., Khorasani, S. N., Neisiany, R. E., & Ramakrishna, S. (2019). Wound dressings: Current advances and future directions. Journal of Applied Polymer Science, 136, 47738.

Granados-Chinchilla, F., & Rodríguez, C. (2017). Tetracyclines in food and feedingstuffs: From regulation to analytical methods, bacterial resistance, and environmental and health implications. Journal of Analytical Methods in Chemistry, 2017, 1315497.

Karthikeyan, E., & Sivaneswari, S. (2024). Advancements in transdermal drug delivery systems: Enhancing medicine with pain-free and controlled drug release. Intelligent Pharmacy, 2024, in press.

Kaur, G., Narayanan, G., Garg, D., Sachdev, A., & Matai, I. (2022). Biomaterials-based regenerative strategies for skin tissue wound healing. ACS Applied Bio Materials, 5(5), 2069–2106.

Kozak, M., Stasiuk, A., Vlizlo, V., Ostapiv, D., Bodnar, Y., Kuzmina, N., Figurka, N., Nosova, N., Ostapiv, R., Kotsumbas, I., Varvarenko, S., & Samaryk, V. (2023a). Polyphosphate ester-type transporters improve antimicrobial properties of oxytetracycline. Antibiotics, 12(3), 616.

Kozak, M., Zelenina, O., Ostapiv, D., Skrypka, M., Samaryk, V., & Vlizlo, V. (2023b). Blood creatinine content and rat kidney structure after intramuscular injection of pegylated antibiotic enrofloxacin. Studia Biologica, 17(3), 47–56.

Laxminarayan, R., Duse, A., Wattal, C., Zaidi, A. K., Wertheim, H. F., Sumpradit, N., Vlieghe, E., Hara, G. L., Gould, I. M., Goossens, H., Greko, C., So, A. D., Bigdeli, M., Tomson, G., Woodhouse, W., Ombaka, E., Peralta, A. Q., Qamar, F. N., Mir, F., Kariuki, S., Bhutta, Z. A., Coates, A., Bergstrom, R., Wright, G. D., Brown, E. D., & Cars, O. (2013). Antibiotic resistance – the need for global solutions. The Lancet Infectious Diseases, 13(12), 1057–1098.

Leppert, W., Malec-Milewska, M., Zajaczkowska, R., & Wordliczek, J. (2018). Transdermal and topical drug administration in the treatment of pain. Molecules, 23(3), 681.

Li, W., Wang, B., Zhang, M., Wu, Z., & Wei, J. (2020). All-natural injectable hydrogel with self-healing and antibacterial properties for wound dressing. Cellulose, 27, 2637–2650.

Lin, Y., Chen, Z., Liu, Y., Wang, J., Lv, W., & Peng, R. (2022). Recent advances in nano-formulations for skin wound repair applications. Drug Design, Development and Therapy, 16, 2707–2728.

McGrath, M., Zimkowska, K., Genoud, K. J., Maughan, J., Gonzalez, J. G., Browne, S., & O’Brien, F. J. (2023). A biomimetic, bilayered antimicrobial collagen-based scaffold for enhanced healing of complex wound conditions. ACS Applied Materials and Interfaces, 15(14), 17444–17458.

Mirhaj, M., Labbaf, S., Tavakoli, M., & Seifalian, A. (2022). An overview on the recent advances in the treatment of infected wounds: Antibacterial Wound Dressings. Macromolecular Bioscience, 22, 2200014.

Mogosanu, G. D., & Grumezescu, A. M. (2014). Natural and synthetic polymers for wounds and burns dressing. International Journal of Pharmaceutics, 463(2), 127–136.

Moradifar, F., Sepahdoost, N., Tavakoli, P., & Mirzapoor, A. (2025). Multi-functional dressings for recovery and screenable treatment of wounds: A review. Heliyon, 11(1), e41465.

Mysak, A., Ostapiv, D., Dron, I., Bukartyk, N., Nosova, N., Varvarenko, S., Samaryk, V., & Vlizlo, V. (2021a). Stvorennia i aprobuvannia hidrohelevykh pektynovykh povyazok dlia likuvannia ran u tvaryn [Creation and approval of hydrogel pectin dressings for wound healing in animals]. In: International Scientific and Practical Conference “Veterinary preparations: Development, quality control and use”. Lviv. P. 68 (in Ukrainian).

Mysak, A., Ostapiv, D., Kuzmina, N., Kozak, M., Lukashchuk, B., Dron, І., Bukartyk, N., Bukartyk, M., & Vlizlo, V. (2021b). Application of dressings based on pectin hydrogel plates for healing aseptic wounds. In: Proceedings of the XX Middle European Buiatric Congress. Ptuj, Slovenia. P. 49.

Nieuwlaat, R., Mbuagbaw, L., Mertz, D., Burrows, L. L., Bowdish, D. M. E., Moja, L., Wright, G. D., & Schünemann, H. J. (2021). Coronavirus disease 2019 and antimicrobial resistance: Parallel and interacting health emergencies. Clinical Infectious Diseases, 72(9), 1657–1659.

Norman, D. C. (2009). Factors predisposing to infection. In: Norman, D., Yoshikawa, T. (Eds.). Infectious disease in the aging. Infectious disease. Humana Press. VA Greater Los Angeles Healthcare System, Los Angeles. P. 11–18.

Nosova, N. H., Maykovych, O. V., Bordenyuk, O. Y., Yakoviv, M. V., & Varvarenko, S. M. (2020). Armuvannya alʹhinat-zhelatynovoho hidroheliu funktsionalizovanym polipropilenovym mikrovoloknom [Reinforcement of alginate-gelatin hydrogel with functionalized polypropylene microfibers]. Chemistry, Speech Technology and Their use, 3(1), 232–238 (in Ukrainian).

Nosova, N., Bukartyk, M., Dron, І., Bukartyk, N., Ostapiv, D., Vlizlo, V., Mysak, А., & Samaryk, V. (2021a). Antiseptic hydrogel bandages for use in veterinary medicine. In: First Ukrainian-Polish Scientific Forum agrobioperspectives. Lviv. P. 84.

Nosova, N., Dron, І., Bukartyk, M., Figurka, N., Varvarenko, S., & Samaryk, V. (2021b). Sposib otrymannia alhinatnoyi hidrohelevoyi plastyny [Method for producing an alginate hydrogel plate]. Patent UA No. 149411u. Byuleten No. 46, 17.11.2021 (in Ukrainian).

Okeke, O. C., & Boateng, J. S. (2016). Composite HPMC and sodium alginate based buccal formulations for nicotine replacement therapy. International Journal of Biological Macromolecules, 91, 31–44.

Ongarora, B. G. (2022). Recent technological advances in the management of chronic wounds: A literature review. Health Science Reports, 5(3), e641.

Pidlisny, O. (2021). Modern approaches to multimodality therapy of purulent wounds (literature review). Health of Society, 9(2), 46–51.

Prokopenko, K., Parkhomenko, K., Dudchenko, M., Kravtsiv, M., & Drozdova, A. (2023). Improving surgical strategies for treating extensive soft tissue wounds resulting from mine and explosive trauma. Bulletin of Ukrainian Medical Stomatological Academy, 23(4), 159–162.

Rezvani Ghomi, E., Khalili, S., Nouri Khorasani, S., Esmaeely Neisiany, R., & Ramakrishna, S. (2019). Wound dressings: Current advances and future directions. Journal of Applied Polymer Science, 136, 47738.

Rezvanian, M., Ahmad, N., Amin, M. C. I. M., & Ng, S.-F. (2017). Optimization, characterization, and in vitro assessment of alginate-pectin ionic cross-linked hydrogel film for wound dressing applications. International Journal of Biological Macromolecules, 97, 131–140.

Ribeiro, M., Simes, M., Vitorino, C., & Mascarenhas-Melo, F. (2024). Hydrogels in cutaneous wound healing: Insights into characterization, properties, formulation and therapeutic potential. Gels, 10(3), 188.

Rosa, J. M., Bonato, L. B., Mancuso, C. B., Martinelli, L., Okura, M. H., Malpass, G. R. P., & Granato, A. C. (2018). Antimicrobial wound dressing films containing essential oils and oleoresins of pepper encapsulated in sodium alginate films. Microbiology, Ciencia Rural, 48(3), e20170740.

Salimiaghdam, N., Singh, L., Schneider, K., Nalbandian, A., Chwa, M., Atilano, S. R., Bao, A., & Kenney, M. C. (2020). Potential adverse effects of ciprofloxacin and tetracycline on ARPE-19 cell lines. BMJ Open Ophthalmology, 5, e000458.

Shaprynskyi, V. O., Skalskyi, S. S., Palamarchuk, S. V., & Shaprynskyi, Y. V. (2015). Modern approaches to treatment of purulent wounds. Unsolved problems. Hospital Surgery, 3, 70–73.

Sharon Sofini, P. S., Biswas, K., Mercy, D. J., Girigoswami, A., & Girigoswami, K. (2024). Nanostructure-assisted wound dressing materials: A literature review. Macromolecular Research, 32, 1065–1087.

Shaw, T. J., & Martin, P. (2009). Wound repair at a glance. Journal of Cell Science, 122(18), 3209–3213.

Shi, C., Wang, C., Liu, H., Li, Q., Li, R., Zhang, Y., Liu, Y., Shao, Y., & Wang, J. (2020). Selection of appropriate wound dressing for various wounds. Frontiers in Bioengineering and Biotechnology, 8, 182.

Thang, N. H., Chien, T. B., & Cuong, D. X. (2023). Polymer-based hydrogels applied in drug delivery: An overview. Gels, 9(7), 523.

Vlizlo, V., Mysak, A., Leno, Y., Slivinska, L., Lukashuk, B., Ostapiv, D., Kuzmina, N., Bodnar, Y., Samaryk, V., Varvarenko, S., Nosova, N., Dron, I., & Bukartyk, N. (2022). Armovana aseptychna hidroheleva povjazka [Reinforced aseptic hydrogel dressing]. Patent UA No. 151071, 01.06.2022 (in Ukrainian).

Vlizlo, V., Mysak, A., Stybel, V., Voloshyn, R., Leno, Yu., Kuzmina, N., Kozak, M., Bodnar, Y., Petpuh, I., Ostapiv, D., Dron, I., Samaryk, V., Bukartyk, N., Nosova, N., & Varvarenko, S. (2021). Treatment of postoperative wounds using pectin-based reinforced dressings and their antimicrobial activity. Scientific Messenger of Lviv National University of Veterinary Medicine and Biotechnologies, Series: Veterinary Sciences, 23(104), 41–46.

Wong, W. F., Ang, K. P., Sethi, G., & Looi, C. Y. (2023). Recent advancement of medical patch for transdermal drug delivery. Medicina, 59(4), 778.

Yanamoto, S., Soutome, S., Tsuda, S., Morishita, K., Hayashida, S., Harata, S., Murata, M., Omori, K., Rokutanda, S., & Umeda, M. (2021). Inhibitory effect of topical antibiotics/antiseptics administration on bacterial growth in the open wound of the jawbone surgery: Randomized controlled, preliminary study. Journal of Dental Sciences, 16(1), 154–159.

Zelenina, O., Vlizlo, V., Kozak, M., Ostapiv, D., Samaryk, V., Dron, I., Stetsko, T., Skrypka, M., Tomchuk, V., Danchuk, O., & Levchenko, A. (2022). Antimicrobial activity of the PEGylated antibiotic enrofloxacin and its functional and structural effect on the liver in rats. Journal of Applied Pharmaceutical Science, 12(6), 68–75.

Zhao, L., Vora, L. K., Kelly, S. A., Li, L., Larrañeta, E., McCarthy, H. O., & Donnelly, R. F. (2023). Hydrogel-forming microarray patch mediated transdermal delivery of tetracycline hydrochloride. Journal of Controlled Release, 356, 196–204.

Zhou, R., Zhou, Q., Ling, G., & Zhang, P. (2023). A cross-linked hydrogel of bismuth sulfide nanoparticles with excellent photothermal antibacterial and mechanical properties to combat bacterial infection and prompt wound healing. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 660, 130832.

Comments (0)

No login
gif