Impact of photoperiod and soybean genotypes (E-genes) on the composition of root exudates, growth and biofilm formation of rhizosphere microbiota of soybean isogenic lines

Atlas, R. M. (2005). Handbook of media for environmental microbiology. 2nd ed. CRC Press, Boca Raton.

Badri, D. V., & Vivanco, J. M. (2009). Regulation and function of root exudetes. Plant, Cell and Environment, 32(6), 666–681.

Barbour, W. M., Hattermann, D. R., & Stacey, G. (1991). Chemotaxis of Bradyrhizobium japonicum to soybean exudates. Applied and Environmental Microbiology, 57(9), 2635–2639.

Bradford, M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1–2), 248–254.

Canarini, A., Kaiser, C., Merchant, A., Richter, A., & Wanek, W. (2019). Root exudation of primary metabolites: Mechanisms and their roles in plant responses to environmental stimuli. Frontiers in Plant Science, 10, 157.

Cesari, A., Paulucci, N., López-Gómez, M., Hidalgo-Castellanos, J., Plá, C. L., & Dardanelli, M. S. (2019). Restrictive water condition modifies the root exudates composition during peanut-PGPR interaction and conditions early events, reversing the negative effects on plant growth. Plant Physiology and Biochemistry, 142, 519–527.

Chamam, A., Sanguin, H., Bellvert, F., Meiffren, G., Comte, G., Wisniewski-Dyé, F., Bertrand, C., & Prigent-Combaret, C. (2013). Plant secondary metabolite profiling evidences strain-dependent effect in the Azospirillum–Oryza sativa association. Phytochemistry, 87, 65–77.

Chatterton, N. J., & Silvius, J. E. (1979). Photosynthate partitioning into starch in soybean leaves. Plant Physiology, 64(5), 749–753.

Chatterton, N. J., & Silvius, J. E. (1980). Acclimation of photosynthate partitioning and photosynthetic rates to changes in length of the daily photosynthetic period. Annals of Botany, 46(6), 739–745.

Chuiko, N. V., Antonyuk, T. S., & Kurdish, I. K. (2002). The chemotactic response of Bradyrhizobium japonicum to various organic compounds. Microbiology, 71(4), 391–396.

Coronado, C., Zuanazzi, J. A. S., Sallaud, C., Quirion, J. C., Esnault, R., Husson, H. P., Kondorosi, A., & Ratet, P. (1995). Alfalfa root flavonoid production is nitrogen regulated. Plant Physiology, 108(2), 533–542.

Danhorn, T., & Fuqua, C. (2007). Biofilm formation by plant-associated bacteria. Annual Review of Microbiology, 61, 401–422.

Du, J., Li, Y., Ur-Rehman, S., Mukhtar, I., Yin, Z., Dong, H., Wang, H., Zhang, X., Gao, Z., Zhao, X., Xin, X., & Ding, X. (2021). Synergistically promoting plant health by harnessing synthetic microbial communities and prebiotics. iScience, 24(8), 102918.

Fattahi, S., Zabihi, E., Abedian, Z., Pourbagher, R., Motevalizadeh Ardekani, A., Mostafazadeh, A., & Akhavan-Niaki, H. (2014). Total phenolic and flavonoid contents of aqueous extract of stinging nettle and in vitro antiproliferative effect on HeLa and BT-474 cell lines. International Journal of Molecular and Cellular Medicine, 3(2), 102–107.

Gage, D. J. (2004). Infection and invasion of roots by symbiotic, nitrogen-fixing rhizobia during nodulation of temperate legumes. Microbiology and Molecular Biology Reviews, 68(2), 280–300.

Gendron, J. M., & Staiger, D. (2023). New horizons in plant photoperiodism. Annual Review of Plant Biology, 74(1), 481–509.

Guo, M., Yang, G., Meng, X., Zhang, T., Li, C., Bai, S., & Zhao, X. (2023). Illuminating plant–microbe interaction: How photoperiod affects rhizosphere and pollutant removal in constructed wetland? Environment International, 179, 108144.

Hayat, R., Ahmed, I., & Sheirdil, R. A. (2012). An overview of plant growth promoting rhizobacteria (PGPR) for sustainable agriculture. In: Ashraf, M., Öztürk, M., Ahmad, M. S. A., & Aksoy, A. (Eds.). Crop production for agricultural improvement. Springer, Dordrecht. Pp. 557–579.

Hlushach, D., & Zhmurko, V. (2021). Vplyv tryvalosti fotoperiodu na biolohichni vlastyvosti bakteriy hrupy PGPR ryzosfery soi kulturnoyi (Glycine max (L.) Merr.) [Influence of the photoperiod duration on the biological properties of PGPR-bacteria of the soybean rhizosphere (Glycine max (L.) Merr.)]. The Journal of V. N. Karazin Kharkiv National University, Series Biology, 37, 87–94 (in Ukrainian).

Jaiswal, D. K., Verma, J. P., Prakash, S., Meena, V. S., & Meena, R. S. (2016). Potassium as an important plant nutrient in sustainable agriculture: A state of the art. In: Meena, V. S., Verma, J. P., Verma, J. K., & Meena, R. S. (Eds.). Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi. Pp. 21–29.

Kape, R., Parniske, M., & Werner, D. (1991). Chemotaxis and nod gene activity of Bradyrhizobium japonicum in response to hydroxycinnamic acids and isoflavonoids. Applied and Environmental Microbiology, 57(1), 316–319.

Kirakosyan, A., Kaufman, P., Nelson, R. L., Kasperbauer, M. J., Duke, J. A., Seymour, E., Chang, S. C., Warber, S., & Bolling, S. (2006). Isoflavone levels in five soybean (Glycine max) genotypes are altered by phytochrome-mediated light treatments. Journal of Agricultural and Food Chemistry, 54(1), 54–58.

Krutylo, D. V., & Nadkernychna, O. V. (2023). Features of local bradyrhizobia populations after long-term period in the soil without a host plant. Mikrobiolohichnyi Zhurnal, 85(5), 20–30.

Kwasny, S. M., & Opperman, T. J. (2010). Static biofilm cultures of Gram-positive pathogens grown in a microtiter format used for anti-biofilm drug discovery. Current Protocols in Pharmacology, 50(1), 13A.8.1–13A.8.23.

Lee, H. I., Lee, J. H., Park, K. H., Sangurdekar, D., & Chang, W. S. (2012). Effect of soybean coumestrol on Bradyrhizobium japonicum nodulation ability, biofilm formation, and transcriptional profile. Applied and Environmental Microbiology, 78(8), 2896–2903.

Li, Y., Hou, Z., Li, W., Li, H., Lu, S., Gan, Z., Du, H., Li, T., Zhang, Y., Kong, F., Cheng, Y., He, M., Ma, L., Liao, C., Li, Y., Dong, L., Liu, B., & Cheng, Q. (2021). The legume-specific transcription factor E1 controls leaf morphology in soybean. BMC Plant Biology, 21(1), 531.

Lin, X., Liu, B., Weller, J. L., Abe, J., & Kong, F. (2021). Molecular mechanisms for the photoperiodic regulation of flowering in soybean. Journal of Integrative Plant Biology, 63(6), 981–994.

Meena, V. S., Bahadur, I., Maurya, B. R., Kumar, A., Meena, R. K., Meena, S. K., & Verma, J. P. (2016). Potassium-solubilizing microorganism in evergreen agriculture: An overview. In: Meena, V. S., Verma, J. P., Verma, J. K., & Meena, R. S. (Eds.). Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi. Pp. 1–20.

Pettigrew, W. T. (2008). Potassium influences on yield and quality production for maize, wheat, soybean and cotton. Physiologia Plantarum, 133(4), 670–681.

Porro, M., Viti, S., Antoni, G., & Neri, P. (1981). Modifications of the Park-Johnson ferricyanide submicromethod for the assay of reducing groups in carbohydrates. Analytical Biochemistry, 118(2), 301–306.

Pramanik, M. H. R., Nagai, M., Asao, T., Matsui, Y., & Matsuyama, T. (2000). Effects of temperature and photoperiod on phytotoxic root exudates of cucumber (Cucumis sativus) in hydroponic culture. Journal of Chemical Ecology, 26(8), 1953–1967.

Qin, Y., Angelini, L. L., & Chai, Y. (2022). Bacillus subtilis cell differentiation, biofilm formation and environmental prevalence. Microorganisms, 10(6), 1108.

Raghavendra, M. P., Chandra Nayaka, S., & Nuthan, B. R. (2016). Role of rhizosphere microflora in potassium solubilization. In: Meena, V. S., Verma, J. P., Verma, J. K., & Meena, R. S. (Eds.). Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi. Pp. 43–59.

Rinaudi, L. V., & Giordano, W. (2010). An integrated view of biofilm formation in rhizobia. FEMS Microbiology Letters, 304(1), 1–11.

Roeber, V. M., Schmülling, T., & Cortleven, A. (2022). The photoperiod: Handling and causing stress in plants. Frontiers in Plant Science, 12, 781988.

Shah, A., Nazari, M., Antar, M., Msimbira, L. A., Naamala, J., Lyu, D., Rabileh, M., Zajonc, J., & Smith, D. L. (2021). PGPR in agriculture: A sustainable approach to increasing climate change resilience. Frontiers in Sustainable Food Systems, 5, 667546.

Stiefel, P., Rosenberg, U., Schneider, J., Mauerhofer, S., Maniura-Weber, K., & Ren, Q. (2016). Is biofilm removal properly assessed? Comparison of different quantification methods in a 96-well plate system. Applied Microbiology and Biotechnology, 100(9), 4135–4145.

Tasma, I. M., & Shoemaker, R. C. (2003). Mapping flowering time gene homologs in soybean and their association with maturity loci. Crop Science, 43(1), 319–328.

Upadhyay, S. K., Srivastava, A. K., Rajput, V. D., Chauhan, P. K., Bhojiya, A. A., Jain, D., Chaubey, G., Dwivedi, P., Sharma, B., & Minkina, T. (2022). Root exudates: Mechanistic insight of plant growth promoting rhizobacteria for sustainable crop production. Frontiers in Microbiology, 13, 916488.

Vives-Peris, V., de Ollas, C., Gómez-Cadenas, A., & Pérez-Clemente, R. M. (2020). Root exudates: From plant to rhizosphere and beyond. Plant Cell Reports, 39(1), 3–17.

Wang, L., Chen, M., Lam, P. Y., Dini-Andreote, F., Dai, L., & Wei, Z. (2022). Multifaceted roles of flavonoids mediating plant-microbe interactions. Microbiome, 10, 233.

Watt, M., & Evans, J. R. (1999). Linking development and determinacy with organic acid efflux from proteoid roots of white lupin grown with low phosphorus and ambient or elevated atmospheric CO2 concentration. Plant Physiology, 120(3), 705–716.

White, L. J., Ge, X., Brözel, V. S., & Subramanian, S. (2017). Root isoflavonoids and hairy root transformation influence key bacterial taxa in the soybean rhizosphere. Environmental Microbiology, 19(4), 1391–1406.

Yemm, E. W., & Cocking, E. C. (1955). The determination of amino-acids with ninhydrin. Analyst, 80(948), 209–213.

Zhalnina, K., Louie, K. B., Hao, Z., Mansoori, N., da Rocha, U. N., Shi, S., Cho, H., Karaoz, U., Loqué, D., Bowen, B. P., Firestone, M. K., Northen, T. R., & Brodie, E. L. (2018). Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly. Nature Microbiology, 3(4), 470–480.

Comments (0)

No login
gif