Abdullah R, Basak I, Patil KS, Alves GW, Larsen JP, Møller SG (2015) Parkinson’s disease and age: The obvious but largely unexplored link. Exp Gerontol 68:33–38. https://doi.org/10.1016/j.exger.2014.09.014
Aborode AT, Pustake M, Awuah WA, Alwerdani M, Shah P, Yarlagadda R, Ahmad S, Silva Correia IF, Chandra A, Nansubuga EP, Abdul-Rahman T, Mehta A, Ali O, Amaka SO, Zuniga Y, Shkodina A, Inya OC, Shen B, Alexiou A (2022) Targeting Oxidative Stress Mechanisms to Treat Alzheimer’s and Parkinson’s Disease: A Critical Review. Oxid Med Cell Longev 2022:934442. https://doi.org/10.1155/2022/7934442
Al-Mahdawi S, Virmouni SA, Pook MA (2014) The emerging role of 5-hydroxymethylcytosine in neurodegenerative diseases. Front Neurosci 8:397. https://doi.org/10.3389/fnins.2014.00397
Article PubMed Central Google Scholar
Annese V, Barcia C, Ros-Bernal F, Gómez A, Ros CM, De Pablos V, Fernández-Villalba E, De Stefano ME, Herrero MT (2013) Evidence of oligodendrogliosis in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinsonism. Neuropathol Appl Neurobiol 39:132–143. https://doi.org/10.1111/j.1365-2990.2012.01271.x
Annese V, Herrero MT, Di Pentima M, Gomez A, Lombardi L, Ros CM, De Pablos V, Fernandez-Villalba E, De Stefano ME (2015) Metalloproteinase-9 contributes to inflammatory glia activation and nigro-striatal pathway degeneration in both mouse and monkey models of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinsonism. Brain Struct Funct 220:703–727. https://doi.org/10.1007/s00429-014-0718-8
Barcia C, Ros CM, Annese V, Gómez A, Ros-Bernal F, Aguado-Yera D, Martínez-Pagán ME, de Pablos V, Fernandez-Villalba E, Herrero MT (2011) IFN-γ signaling, with the synergistic contribution of TNF-α, mediates cell specific microglial and astroglial activation in experimental models of Parkinson’s disease. Cell Death Dis 2:e142. https://doi.org/10.1038/cddis.2011.17
Article CAS PubMed Central Google Scholar
Barcia C, Ros CM, Annese V, Carrillo-de Sauvage MA, Ros-Bernal F, Gómez A, Yuste JE, Campuzano CM, de Pablos V, 1 Fernandez-Villalba E, Herrero MT, (2012) ROCK/Cdc42-mediated microglial motility and gliapse formation lead to phagocytosis of degenerating dopaminergic neurons in vivo. Sci Rep 2:809. https://doi.org/10.1038/srep00809
Article CAS PubMed Central Google Scholar
Barcia C, Ros CM, Ros-Bernal F, Gómez A, Annese V, Carrillo-de Sauvage MA, Yuste JE, Campuzano CM, de Pablos V, Fernández-Villalba E, Herrero MT (2013) Persistent phagocytic characteristics of microglia in the substantia nigra of long-term Parkinsonian macaques. J Neuroimmunol 261:60–66. https://doi.org/10.1016/j.jneuroim.2013.05.001
Blesa J, Phani S, Jackson-Lewis V, Przedborski S (2012) Classic and new animal models of Parkinson’s disease. J Biomed Biotechnol 2012:845618. https://doi.org/10.1155/2012/845618
Article CAS PubMed Central Google Scholar
Bogdanov MB, Matson WR, Wang L, Matson T, Saunders-Pullman R, Bressman S, Flint Beal M (2008) Metabolomic profiling to develop blood biomarkers for Parkinson’s disease. Brain 131:389–396. https://doi.org/10.1093/brain/awm304
Bolner A, Pilleri M, De Riva V, Nordera G (2011) Plasma and urinary HPLC-ED determination of the ratio of 8-OHdG/2-dG in Parkinson’s disease. Clin Lab 57:859–866
Bourdenx M, Nioche A, Dovero S, Arotcarena ML, Camus S, Porras G, Thiolat ML, Rougier NP, Prigent A, Aubert P, Bohic S, Sandt C, Laferrière F, Doudnikoff E, Kruse N, Mollenhauer B, Novello S, Morari M, Leste-Lasserre T, Damas IT, Goillandeau M, Perier C, Estrada C, Garcia-Carrillo N, Recasens A, Vaikath NN, El-Agnaf OMA, Herrero MT, Derkinderen P, Vila M, Obeso JA, Dehay B, Bezard E. (2020) Identification of distinct pathological signatures induced by patient-derived α-synuclein structures in nonhuman primates. Sci. Adv 6:eaaz9165. https://doi.org/10.1126/sciadv.aaz9165.
Braak H, Del Tredici K, Rüb U, de Vos RA, Steur ENJ, Braak E (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24:197–211. https://doi.org/10.1016/s0197-4580(02)00065-9
Callio J, Oury TD, Chu CT (2005) Manganese superoxide dismutase protects against 6-Hydroxydopamine Injury in mouse brains. J Biol Chem 280:18536–18542. https://doi.org/10.1074/jbc.m413224200
Chakrabarti S, Bisaglia M (2023) Oxidative stress and neuroinflammation in Parkinson’s disease: the role of dopamine oxidation products. Antioxidants 12:955. https://doi.org/10.3390/antiox12040955
Article CAS PubMed Central Google Scholar
Chaudhuri KR, Azulay J, Odin P, Lindvall S, Domingos JA, Alobaidi A, Kandukuri PL, Chaudhari VS, Parra JC, Yamazaki T, Oddsdottir J, Wright J, Martínez-Martín P (2024) Economic burden of Parkinson’s dsease: a multinational, real-world, cost-of-illness study. Drugs Real World Outcomes 11:1–11. https://doi.org/10.1007/s40801-023-00410-1
Article PubMed Central Google Scholar
Chuang YH, Paul KC, Bronstein JM, Bordelon Y, Horvath S, Ritz B (2017) Parkinson’s disease is associated with DNA methylation levels in human blood and saliva. Genome Med 9:76. https://doi.org/10.1186/s13073-017-0466-5
Article CAS PubMed Central Google Scholar
Costa T, Fernandez-Villalba E, Izura V, Lucas-Ochoa AM, Menezes-Filho NJ, Santana RC, de Oliveira MD, Araújo FM, Estrada C, Silva V, Costa SL, Herrero MT (2021) Combined 1-deoxynojirimyein and ibuprofen treatment decreases microglia activation, phagocytosis and dopaminergic degeneration in MPTP-treated mice. J Neuroimm Pharmacol 16:390–402. https://doi.org/10.1007/s11481-020-09925-8
Cuenca L, Gil-Martinez AL, Cano-Fernandez L, Sánchez-Rodrigo C, Estrada C, Fernández-Villalba E, Herrero MT (2019) Parkinson's disease: a short story of 200 years. Histol Histopathol 34:573–591. https://doi.org/10.14670/hh-18-073
Dauer WT, Przedborski S (2003) Parkinson’s disease mechanisms and models. Neuron 39:889–909. https://doi.org/10.1016/s0896-6273(03)00568-3
de Araújo FM, Cuenca-Bermejo L, Fernández-Villalba E, Costa SL, Silva VDA, Herrero MT (2022) Role of Microgliosis and NLRP3 inflammasome in Parkinson's disease pathogenesis and therapy. J Neuroimm Pharmacol l16:390–402. https://doi.org/10.1007/s12640-022-00616-1.
Dionisio PA, Amaral JD, Rodrigues CPM (2021) Oxidative stress and regulated cell death in Parkinson’s disease. Ageing Res Rev 67:101263. https://doi.org/10.1016/j.arr.2021.101263
Dovonou A, Bolduc C, Soto Linan V, Gora C, PeraltaMR LM (2023) Animal models of Parkinson’s disease: bridging the gap between disease hallmarks and research questions. Trans Neurodeg 12:36. https://doi.org/10.1186/s40035-023-00368-8
Du R, Bu W (2021) Simvastatin prevents neurodegeneration in the MPTP mouse Model of Parkinson’s disease via inhibition of A1 reactive astrocytes. NeuroImmunoModulation 28:82–89. https://doi.org/10.1159/000513678
Du Y, Ma Z, Lin S, Dodel R, Gao F, Bales KR, Triarhou LC, Chernet E, Perry KW, Nelson DL, Luecke S, Phebus L, Bymaster FP, Paul SM (2001) Minocycline prevents nigrostriatal dopaminergic neurodegeneration in the MPTP model of Parkinson’s disease. Proc Natl Acad Sci USA 98:14669–14674. https://doi.org/10.1073/pnas.251341998
Article CAS PubMed Central Google Scholar
Faucheux BA, Herrero MT, Villares J, Levy R, Javoy-Agid F, Obeso JA, Hauw JJ, Agid Y, Hirsch EC (1995) Autoradiographic localization and density of [125I]ferrotransferrin binding sites in the basal ganglia of control subjects, patients with Parkinson’s disease and MPTP-lesioned monkeys. Brain Res 691:115–124. https://doi.org/10.1016/0006-8993(95)00629-5
Gil-Martinez AL, Cuenca L, Estrada C, Sánchez-Rodrigo C, Fernández-Villalba E, Herrero MT (2018) Unexpected exacerbation of neuroinflammatory response after a combined therapy in old Parkinsonian mice. Front Cell Neurosci 12:451. https://doi.org/10.3389/fncel.2018.00451
Article CAS PubMed Central Google Scholar
Gil-Martinez AL, Estrada C, Cuenca L, Cano JA, Valiente M, Martínez-Cáceres CM, Fernández-Villalba E, Herrero MT (2019) Local gastrointestinal injury exacerbates inflammation and dopaminergic cell death in Parkinsonian mice. Neurotox Res 35:918–930. https://doi.org/10.1007/s12640-019-0010-z
Gil-Martinez AL, Cuenca-Bermejo L, Gallo-Soljancic P, Sánchez-Rodrigo C, Izura V, Steinbusch HW, Fernández-Villalba E, Herrero MT (2020a) Study of the link between neuronal death, glial response, and MAPK pathway in old Parkinsonian mice. Front Aging Neurosci 12:214. https://doi.org/10.3389/fnagi.2020.00214
Gil-Martinez AL, Cuenca-Bermejo L, Gonzalez-Cuello AM, Sanchez-Rodrig C, Parrado A, Vyas S, Fernandez-Villalba E, Herrero MT (2020b) Identification of differentially expressed genes profiles in a combined mouse model of Parkinsonism and colitis. Sci Rep 10:13147. https://doi.org/10.1038/s41598-020-69695-4
Gmitterová K, Heinemann U, Gawinecka J, Varges D, Ciesielczyk B, Valkovič P, Benetin J, Zerr I (2009) 8-OHdG in cerebrospinal fluid as a marker of oxidative stress in various neurodegenerative diseases. Neurodegener Dis 6:263–269. https://doi.org/10.1159/000237221
Goldman JG, Postuma RB (2014) Premotor and nonmotor features of Parkinson’s disease. Curr Opin Neurol 27:434–441. https://doi.org/10.1097/wco.0000000000000112
Article PubMed Central Google Scholar
He F, Ru X, Wen T (2020) NRF2, a transcription factor for stress response and beyond. Int J Mol Sci 21:4777. https://doi.org/10.3390/ijms21134777
Article CAS PubMed Central Google Scholar
He D, Hu G, Zhou A, Liu Y, Huang B, Su Y, Wang H, Ye B, He Y, Gao X, Fu S, Liu D (2022) Echinocystic acid inhibits inflammation and exerts neuroprotective effects in MPTP-induced Parkinson’s disease model mice. Front Pharmacol 12:787771. https://doi.org/10.3389/fphar.2021.787771
Comments (0)