Motor Learning in Older Adults with Mild Cognitive Impairment: A Systematic Review

Albert, M. S., DeKosky, S. T., Dickson, D., Dubois, B., Feldman, H. H., Fox, N. C., Gamst, A., Holtzman, D. M., Jagust, W. J., Petersen, R. C., Snyder, P. J., Carrillo, M. C., Thies, B., & Phelps, C. H. (2011). The diagnosis of mild cognitive impairment due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s & Dementia: The Journal of the Alzheimer’s Association, 7(3), 270–279. https://doi.org/10.1016/j.jalz.2011.03.008

Article  Google Scholar 

Albert, M. S., DeKosky, S. T., Dickson, D., Dubois, B., Feldman, H. H., Fox, N. C., Phelps, C. H., Holtzman, D. M., Jagust, W. J., Petersen, R. C., Snyder, P. J., Carrillo, M. C., Thies, B., & Phelps, C. H. (2013). The diagnosis of mild cognitive impairment due to Alzheimer’s disease: Recommendations from the national institute on aging- Alzheimer’s association workgroups on diagnostic guidelines for Alzheimer’s disease. Focus, 11(1), 96–106.

Albouy, G., King, B. R., Maquet, P., & Doyon, J. (2013). Hippocampus and striatum: Dynamics and interaction during acquisition and sleep-related motor sequence memory consolidation. Hippocampus, 23(11), 985–1004. https://doi.org/10.1002/hipo.22183

Article  PubMed  Google Scholar 

ADNI2, 2020. Alzheimer’s disease neuroimaging initiative: ADNI2 procedures manual, https://adni.loni.usc.edu/wpcontent/uploads/2008/07/adni2-procedures-manual.pdf, Accessed Jan. 27, 2024

Ameli, M., Kemper, F., Sarfeld, A.-S., Kessler, J., Fink, G. R., & Nowak, D. A. (2011). Arbitrary visuo-motor mapping during object manipulation in mild cognitive impairment and Alzheimer’s disease: A pilot study. Clinical Neurology and Neurosurgery, 113(6), 453–458. https://doi.org/10.1016/j.clineuro.2011.01.011

Article  PubMed  Google Scholar 

American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders, (5th ed.) American Psychiatric Association.

American Psychiatric Association. (2022). Diagnostic and statistical manual of mental disorders (5th ed., text rev.) neurocognitive disorders supplement. American Psychiatric Association.

Aslan, D. H., Hernandez, M. E., Frechette, M. L., Gephart, A. T., Soloveychik, I. M., & Sosnoff, J. J. (2021). The neural underpinnings of motor learning in people with neurodegenerative diseases: A scoping review. Neuroscience and Biobehavioral Reviews, 131, 882–898. https://doi.org/10.1016/j.neubiorev.2021.10.006

Article  PubMed  Google Scholar 

Bahureksa, L., Najafi, B., Saleh, A., Sabbagh, M., Coon, D., Mohler, M. J., & Schwenk, M. (2017). The impact of mild cognitive impairment on gait and balance: A systematic review and meta-analysis of studies using instrumented assessment. Gerontology, 63(1), 67–83. https://doi.org/10.1159/000445831

Article  PubMed  Google Scholar 

Caffò, A. O., Spano, G., Tinella, L., Lopez, A., Ricciardi, E., Stasolla, F., & Bosco, A. (2022). The prevalence of amnestic and non-amnestic mild cognitive impairment and its association with different lifestyle factors in a South Italian elderly population. International Journal of Environmental Research and Public Health, 19, 3097. https://doi.org/10.3390/ijerph19053097

Article  PubMed  PubMed Central  Google Scholar 

Chen Y. X., Liang, N., Li, X., Yang, S., Wang Y., & Shi. N. (2021). Diagnosis and treatment for mild cognitive impairment: A systematic review of clinical practice guidelines and consensus statements. Frontiers in Neurology, 12. https://doi.org/10.3389/fneur.2021.719849

Chen, Y., Qian, X., Zhang, Y., Su, W., Huang, Y., Wang, X., Chen, X., Zhao, E., Han, L., & Ma, Y. (2022). Prediction models for conversion from mild cognitive impairment to Alzheimer’s disease: A systematic review and meta-analysis. Frontiers in Aging Neuroscience, 14, 840386–840386. https://doi.org/10.3389/fnagi.2022.840386

Article  CAS  PubMed  PubMed Central  Google Scholar 

Corkin, S. (1968). Acquisition of motor skill after bilateral medial temporal-lobe excision. Neuropsychologia, 6, 255–265.

Article  Google Scholar 

Csukly, G., Sirály, E., Fodor, Z., Horváth, A., Salacz, P., Hidasi, Z., Csibri, E., Rudas, G., & Szabó, Á. (2016). The differentiation of amnestic type MCI from the non-amnestic types by Structural MRI. Frontiers in Aging Neuroscience. 8. https://doi.org/10.3389/fnagi.2016.00052.

De Wit, L., Kessels, R. P. C., Kurasz, A. M., Amofa, P., Sr., O’Shea, D., Marsiske, M., Chandler, M. J., Piai, V., Lambertus, T., & Smith, G. E. (2023). Declarative learning, priming, and procedural learning performances comparing individuals with amnestic mild cognitive impairment, and cognitively unimpaired older adults. Journal of the International Neuropsychological Society, 29(2), 113–125. https://doi.org/10.1017/S1355617722000029

Article  PubMed  Google Scholar 

De Wit, L., Marsiske, M., O’Shea, D., Kessels, R. P. C., Kurasz, A. M., DeFeis, B., Schaefer, N., & Smith, G. E. (2021). Procedural learning in individuals with amnestic mild cognitive impairment and Alzheimer’s dementia: A systematic review and meta-analysis. Neuropsychology Review, 31(1), 103–114. https://doi.org/10.1007/s1106-020-09449-1

Article  PubMed  Google Scholar 

Deeks, J. J., Higgins, J. P. T., & Altman, D.G. (2023). Chapter 10: Analysing data and undertaking meta-analyses. In Higgins, J. P. T, Thomas J., Chandler J., Cumpston M., Li T., Page M. J., & Welch V. A. (Eds.), Cochrane Handbook for Systematic Reviews of Interventions version 6.4. Available from www.training.cochrane.org/handbook.

Dugger, B. N., Davis, K., Malek-Ahmadi, M., et al. (2015). Neuropathological comparisons of amnestic and nonamnestic mild cognitive impairment. BMC Neurology, 15, 146. https://doi.org/10.1186/s12883-015-0403-4

Article  PubMed  PubMed Central  Google Scholar 

Durand-Ruel, M., Park, C., Moyne, M., Maceira-Elvira, P., Morishita, T., & Hummel, F. C. (2023). Early motor skill acquisition in healthy older adults: Brain correlates of the learning process. Cerebral Cortex, 33(12), 7356–7368. https://doi.org/10.1093/cercor/bhad044

Article  PubMed  PubMed Central  Google Scholar 

Ewers, M., Morgan, D. G., Gordon, M. N., & Woodruff-Pak, D. S. (2006). Associative and motor learning in 12-month-old transgenic APP + PS1 mice. Neurobiology of Aging, 27(8), 1118–1128. https://doi.org/10.1016/j.neurobiolaging.2005.05.019

Article  CAS  PubMed  Google Scholar 

Fischer, P., Jungwirth, S., Zehetmayer, S., Weissgram, S., Hoenigschnabl, S., Gelpi, E., Krampla, W., & Tragl, K. H. (2007). Conversion from subtypes of mild cognitive impairment to Alzheimer dementia. Neurology, 68(4), 288–291. https://doi.org/10.1212/01.wnl.0000252358.03285.9d

Article  CAS  PubMed  Google Scholar 

Fitts, P. M., & Posner, M. I. (1967). Human performance. Brooks/Cole

Folstein, M. F., Folstein, S. E., & McHugh, P. R. (1975). Mini-mental state: A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12(3), 189–198. https://doi.org/10.1016/002-3956(75)90026-6

Article  CAS  PubMed  Google Scholar 

Gobel, E. W., Blomeke, K., Zadikoff, C., Simuni, T., Weintraub, S., & Reber, P. J. (2013). Implicit perceptual-motor skill learning in mild cognitive impairment and Parkinson’s disease. Neuropsychology, 27(3), 314–321.

Article  PubMed  PubMed Central  Google Scholar 

Hong, Y., Alvarado, R. L., Jog, A., Greve, D. N., & Salat, D. H. (2020). Serial reaction time task performance in older adults with neuropsychologically defined mild cognitive impairment. Journal of Alzheimer’s Disease, 74(2), 491–500. https://doi.org/10.3233/JAD-191323

Article  PubMed  Google Scholar 

Hudson, T. E., & Landy, M. S. (2012). Motor learning reveals the existence of multiple codes for movement planning. Journal of Neurophysiology, 108(10), 2708–2716. https://doi.org/10.1152/jn.00355.2012

Article  PubMed  PubMed Central  Google Scholar 

Izawa, J., Rane, T., Donchin, O., & Shadmehr, R. (2008). Motor adaptation as a process of reoptimization. The Journal of Neuroscience, 28(11), 2883–2891. https://doi.org/10.1523/JNEUROSCI.5359-07.2008

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jak, A. J., Bondi, M. W., Delano-Wood, L., Wierenga, C., CoreyBloom, J., Salmon, D. P., & Delis, D. C. (2009). Quantification of five neuropsychological approaches to defining mild cognitive impairment. The American Journal of Geriatric Psychiatry, 17, 368–375.

Article  PubMed  PubMed Central  Google Scholar 

Jebsen, R. H., Taylor, N., Trieschmann, R. B., Trotter, M. J., Howard, L., & A,. (1969). An objective and standardized test of hand function. Archives of Physical Medicine and Rehabilitation, 50, 311–319.

CAS  PubMed  Google Scholar 

Jungwirth, S., Zehetmayer, S., Hinterberger, M., Tragl, K. H., & Fischer, P. (2012). The validity of amnestic MCI and non-amnestic MCI at age 75 in the prediction of Alzheimer’s dementia and vascular dementia. International Psychogeriatrics, 24(6), 959–966. https://doi.org/10.1017/S1041610211002870

Article  CAS  PubMed  Google Scholar 

Kassebaum, N. J. (2022). Global, regional, and national burden of diseases and injuries for adults 70 years and older: systematic analysis for the Global Burden of Disease 2019 Study. BMJ: British Medical Journal, 376(8329), 115. https://doi.org/10.1136/bmj-2021-068208

Keith, C. M., McCuddy, W. T., Lindberg, K., Miller, L. E., Bryant, K., Mehta, R. I., Wilhelmsen, K., Miller, M., Navia, R. O., Ward, M., Deib, G., D’Haese, P.-F., & Haut, M. W. (2022). Procedural learning and retention relative to explicit learning and retention in mild cognitive impairment and Alzheimer’s disease using a modification of the trail making test. Aging, Neuropsychology, and Cognition, 30(5), 669–686. https://doi.org/10.1080/13825585.2022.2077297

Article  Google Scholar 

Kikuchi, M., Kobayashi, K., Itoh, S., Kasuga, K., Miyashita, A., Ikeuchi, T., Yumoto, E., Kosaka, Y., Fushimi, Y., Takeda, T., Manabe, S., Hattori, S., Nakaya, A., Kamijo, K., & Matsumura, Y. (2022). Identification of mild cognitive impairment subtypes predicting conversion to Alzheimer’s disease using multimodal data. Computational and Structural Biotechnology Journal, 20, 5296–5308. https://doi.org/10.1016/j.csbj.2022.08.007

Article  PubMed  PubMed Central  Google Scholar 

Kiper, P., Richard, M., Stefanutti, F., Pierson-Poinsignon, R., Cacciante, L., Perin, C., Mazzucchelli, M., Viganò, B., & Meroni, R. (2022). Combined motor and cognitive rehabilitation: The impact on motor performance in patients with mild cognitive impairment. systematic review and meta-analysis. Journal of Personalized Medicine, 12(2), 276. https://doi.org/10.3390/jpm12020276

Knowlton, B. J., Siegel, A. L. M., & Moody, T. D. (2017). 3.17 - Procedural learning in humans. In Learning and memory: A comprehensive reference (Second Edition, pp. 295–312). Elsevier Ltd. https://doi.org/10.1016/BP78-0-12-809324-5.21085-7

Koppelmans, V., Silvester, B., & Duff, K. (2022). Neural mechanisms of motor dysfunction in mild cognitive impairment and Alzheimer’s disease: A systematic review. Journal of Alzheimer’s Disease, 6(1), 307–344. https://doi.org/10.3233/ADR-210065

Article  Google Scholar 

Krakauer, J. W., Hadjiosif, A. M., Xu, J., Wong, A. L., Hai

Comments (0)

No login
gif