Propensity score weighting analysis with complex survey data for estimating population-level treatment effects on survival: a simulation study

National Center for Health Statistics: 2015 National Health Interview Survey (NHIS) Public Use Data Release Survey Description (2016)

Andersen, P.K., Gill, R.D.: Cox’s regression model for counting processes: a large sample study. Ann. Stat. (1982). https://doi.org/10.1214/aos/1176345976

Article  Google Scholar 

Austin, P.C.: An introduction to propensity score methods for reducing the effects of confounding in observational studies. Multivariate Behav Res 46(3), 399–424 (2011). https://doi.org/10.1080/00273171.2011.568786

Article  PubMed  PubMed Central  Google Scholar 

Austin, P.C.: The performance of different propensity score methods for estimating marginal hazard ratios. Stat. Med. 32(16), 2837–2849 (2013). https://doi.org/10.1002/sim.5705

Article  PubMed  Google Scholar 

Austin, P.C.: The use of propensity score methods with survival or time-to-event outcomes: reporting measures of effect similar to those used in randomized experiments. Stat. Med. 33(7), 1242–1258 (2014). https://doi.org/10.1002/sim.5984

Article  PubMed  Google Scholar 

Austin, P.C.: The iterative bisection procedure: a useful tool for determining parameter values in data-generating processes in Monte Carlo simulations. BMC Med. Res. Methodol. (2023a). https://doi.org/10.1186/s12874-023-01836-5

Article  PubMed  PubMed Central  Google Scholar 

Austin, P.C.: The iterative bisection procedure: a useful tool for determining parameter values in data-generating processes in Monte Carlo simulations. BMC Med. Res. Methodol. 23(1), 45 (2023b). https://doi.org/10.1186/s12874-023-01836-5

Article  PubMed  PubMed Central  Google Scholar 

Austin, P.C., Mamdani, M.M.: A comparison of propensity score methods: a case-study estimating the effectiveness of post-AMI statin use. Stat. Med. 25(12), 2084–2106 (2006). https://doi.org/10.1002/sim.2328

Article  PubMed  Google Scholar 

Austin, P.C., Schuster, T.: The performance of different propensity score methods for estimating absolute effects of treatments on survival outcomes: a simulation study. Stat. Methods Med. Res. 25(5), 2214–2237 (2016). https://doi.org/10.1177/0962280213519716

Article  PubMed  Google Scholar 

Austin, P.C., Stuart, E.A.: Moving towards best practice when using inverse probability of treatment weighting (IPTW) using the propensity score to estimate causal treatment effects in observational studies. Stat. Med. 34(28), 3661–3679 (2015). https://doi.org/10.1002/sim.6607

Article  PubMed  PubMed Central  Google Scholar 

Austin, P.C., Jembere, N., Chiu, M.: Propensity score matching and complex surveys. Stat. Methods Med. Res. 27(4), 1240–1257 (2018). https://doi.org/10.1177/0962280216658920

Article  PubMed  Google Scholar 

Austin, P.C., Ceyisakar, I.E., Steyerberg, E.W., Lingsma, H.F., Marang-van de Mheen, P.J.: Ranking hospital performance based on individual indicators: can we increase reliability by creating composite indicators? BMC Med. Res. Methodol. (2019). https://doi.org/10.1186/s12874-019-0769-x

Article  PubMed  PubMed Central  Google Scholar 

Bender, R., Augustin, T., Blettner, M.: Generating survival times to simulate Cox proportional hazards models. Stat. Med. 24(11), 1713–1723 (2005). https://doi.org/10.1002/sim.2059

Article  PubMed  Google Scholar 

Binder, D.A.: Fitting Cox’s proportional hazards models from survey data. Biometrika 79(1), 139–147 (1992). https://doi.org/10.1093/biomet/79.1.139

Article  Google Scholar 

Boyd, A.P., Kittelson, J.M., Gillen, D.L.: Estimation of treatment effect under non-proportional hazards and conditionally independent censoring. Stat. Med. 31(28), 3504–3515 (2012)

Article  PubMed  Google Scholar 

Cannas, M., Arpino, B.: A comparison of machine learning algorithms and covariate balance measures for propensity score matching and weighting. Biom. J. 61(4), 1049–1072 (2019). https://doi.org/10.1002/bimj.201800132

Article  PubMed  Google Scholar 

Centers for Disease Control and Prevention [cited Feb. 25, 2025], "National Health Interview Survey 2018 Data Release," [online]. Available at: https://archive.cdc.gov/#/details?url=https://www.cdc.gov/nchs/nhis/nhis_2018_data_release.htm.

Centers for Medicare and Medicaid Services [cited Jun. 26, 2024], "Medicare Current Beneficiary Survey (MCBS)." [online]. Available at: https://www.cms.gov/data-research/research/medicare-current-beneficiary-survey.

Cook, B.L., McGuire, T.G., Meara, E., Zaslavsky, A.M.: Adjusting for health status in non-linear models of health care disparities. Health Serv. Outcomes Res. Method. 9(1), 1–21 (2009). https://doi.org/10.1007/s10742-008-0039-6

Article  Google Scholar 

Dong, N., Stuart, E.A., Lenis, D., Quynh Nguyen, T.: Using propensity score analysis of survey data to estimate population average treatment effects: a case study comparing different methods. Eval. Rev. 44(1), 84–108 (2020). https://doi.org/10.1177/0193841X20938497

Article  PubMed  Google Scholar 

Dugoff, E.H., Schuler, M., Stuart, E.A.: Generalizing observational study results: applying propensity score methods to complex surveys. Health Serv. Res. 49(1), 284–303 (2014). https://doi.org/10.1111/1475-6773.12090

Article  PubMed  Google Scholar 

Dunkler, D., Ploner, M., Schemper, M., Heinze, G.: Weighted Cox Regression Using the R Package coxphw. J. Stat. Softw. (2018). https://doi.org/10.18637/jss.v084.i02

Article  Google Scholar 

Freedman, V.A., Kasper, J.D.: Cohort profile: the national health and aging trends study (NHATS). Int. J. Epidemiol. 48(4), 1044–1045g (2019)

Article  PubMed  PubMed Central  Google Scholar 

Gail, M.H., Wieand, S., Piantadosi, S.: Biased estimates of treatment effect in randomized experiments with nonlinear regressions and omitted covariates. Biometrika 71(3), 431–444 (1984). https://doi.org/10.1093/biomet/71.3.431

Article  Google Scholar 

Gharibzadeh, S., Mansournia, M.A., Rahimiforoushani, A., Alizadeh, A., Amouzegar, A., Mehrabani-Zeinabad, K., Mohammad, K.: Comparing different propensity score estimation methods for estimating the marginal causal effect through standardization to propensity scores. Commun. Stat. Simul. Comput. 47(4), 964–976 (2018). https://doi.org/10.1080/03610918.2017.1300267

Article  Google Scholar 

Handorf, E.A., Smaldone, M.C., Movva, S., Mitra, N.: Analysis of survival data with nonproportional hazards: a comparison of propensity-score-weighted methods. Biom. J. 66(1), e202200099 (2024). https://doi.org/10.1002/bimj.202200099

Article  PubMed  Google Scholar 

Hu, L., Ji, J., Li, F.: Estimating heterogeneous survival treatment effect in observational data using machine learning. Stat. Med. 40(21), 4691–4713 (2021). https://doi.org/10.1002/sim.9090

Article  PubMed  PubMed Central  Google Scholar 

Imai, K., Ratkovic, M.: Covariate balancing propensity score. J. r. Stat. Soc. Ser. B Stat Methodol. 76(1), 243–263 (2014)

Article  Google Scholar 

Imai, K., King, G., Stuart, E.A.: Misunderstandings between experimentalists and observationalists about causal inference. J. R. Stat. Soc. Ser. A Stat. Soc. 171(2), 481–502 (2008). https://doi.org/10.1111/j.1467-985X.2007.00527.x

Article  Google Scholar 

Imbens, G.W.: Nonparametric estimation of average treatment effects under exogeneity: a review. Rev. Econ. Stat. 86(1), 4–29 (2004). https://doi.org/10.1162/003465304323023651

Article  Google Scholar 

Kolenikov, S.: Resampling variance estimation for complex survey data. Stata J. Promot. Commun. Stat. Stata 10(2), 165–199 (2010). https://doi.org/10.1177/1536867x1001000201

Article  Google Scholar 

Lee, B.K., Lessler, J., Stuart, E.A.: Improving propensity score weighting using machine learning. Stat. Med. 29(3), 337–346 (2009). https://doi.org/10.1002/sim.3782

Article  Google Scholar 

Lee, H., Kim, J.: Jackknife variance estimation for two-phase samples with high sampling fractions. In Proceedings of the Survey Research Methods Section, American Statistical Association (2002)

Li, Y., Li, L.: Propensity score analysis methods with balancing constraints: a Monte Carlo study. Stat. Methods Med. Res. 30(4), 1119–1142 (2021). https://doi.org/10.1177/0962280220983512

Article  PubMed  PubMed Central  Google Scholar 

Li, F., Thomas, L.E.: Addressing extreme propensity scores via the overlap weights. Am. J. Epidemiol. (2018). https://doi.org/10.1093/aje/kwy201

Article  PubMed  PubMed Central  Google Scholar 

Li, L., Yang, C., Hu, L., Zhang, W., Aldridge, M., Liu, B., Mazumdar, M.: Comparative effectiveness of propensity score estimation methods for inverse probability of treatment weighting analysis with complex survey data: a simulation study. J. Surv. Stat. Methodol. (2025). https://doi.org/10.1093/jssam/smaf003

Article  Google Scholar 

National Center for Health Statistics Division of Analysis and Epidemiology: [cited Jul. 9, 2024], "NHIS Public-use Linked Mortality Files (2022b) [online]. Available at: https://www.cdc.gov/nchs/data-linkage/mortality-public.htm

Lumley, T., Gao, P., Schneider, B.: [cited Feb 24, 2025], "Package ‘survey’," [online] (2024). Available at:

Comments (0)

No login
gif