Afrizal, S.H., Handayani, P.W., Hidayanto, A.N., Eryando, T., Budiharsana, M., Martha, E.: Barriers and challenges to Primary Health Care Information System (PHCIS) adoption from health management perspective: a qualitative study. Inform. Med. Unlocked (2019). https://doi.org/10.1016/j.imu.2019.100198
Algahtani, M., Altameem, A., Baig, A.R.: An Extended UTAUT2 model to explain the adoption of virtual reality technology in health centers: an empirical study based in Riyadh. IJCSNS Int. J. Comput. Sci. Netw. Secur. 21(3), 219 (2021). https://doi.org/10.22937/IJCSNS.2021.21.3.30
Alipour, J., Mehdipour, Y., Karimi, A., Sharifian, R.: Affecting factors of cloud computing adoption in public hospitals affiliated with Zahedan University of Medical Sciences: a cross-sectional study in the Southeast of Iran. Digit. Health (2021). https://doi.org/10.1177/20552076211033428
Article PubMed PubMed Central Google Scholar
Alnassar, B.Y., Baashirah, R.A.: Factors affecting technology acceptance of cloud computing in ICT Departments of the Jordanian Government Hospitals. Int. J. Serv. Sci. Manag. Eng. Technol. 15(1), 1–18 (2024). https://doi.org/10.4018/IJSSMET.361590
Ammenwerth, E., Iller, C., Mahler, C.: IT-adoption and the interaction of task, technology and individuals: a fit framework and a case study. BMC Med. Inform. Decis. Mak. (2006). https://doi.org/10.1186/1472-6947-6-3
Article PubMed PubMed Central Google Scholar
Bennett, L., Purssell, H., Street, O., Piper Hanley, K., Morling, J.R., Hanley, N.A., Athwal, V., Guha, I.N.: Health technology adoption in liver disease: innovative use of data science solutions for early disease detection. Front. Digit. Health (2022). https://doi.org/10.3389/fdgth.2022.737729
Article PubMed PubMed Central Google Scholar
Bhuyan, S., Anusandhan, S.O.: Exploring cloud computing adoption in private hospitals in india: an investigation of and TOE model. J. Adv. Res. Dyn. Control Syst. 15, 10–17 (2018)
Bhuyan, S., Dash, M.: Predicting cloud computing adoption in hospitals using regression analysis. J. Eng. Appl. Sci. 13(6), 1436–1441 (2018). https://doi.org/10.3923/jeasci.2018.1436.1441
Carvalho, J.V., Rocha, Á., Vasconcelos, J., Abreu, A.: A health data analytics maturity model for hospitals information systems. Int. J. Inf. Manag. 46, 278–285 (2019). https://doi.org/10.1016/j.ijinfomgt.2018.07.001
Chandrasekaran, R., Sankaranarayanan, B., Pendergrass, J.: Unfulfilled promises of health information exchange: What inhibits ambulatory clinics from electronically sharing health information? Int. J. Med. Inform. (2021). https://doi.org/10.1016/j.ijmedinf.2021.104418
Choudhury, A., Asan, O.: Impact of accountability, training, and human factors on the use of artificial intelligence in healthcare: Exploring the perceptions of healthcare practitioners in the US. Hum. Factors Healthc. (2022). https://doi.org/10.1016/j.hfh.2022.100021
Daraghmeh, R., & Brown, R. A Big Data Maturity Model for Electronic Health Records in Hospitals. In: 2021 International Conference on Information Technology, ICIT 2021 - Proceedings, 826–833. https://doi.org/10.1109/ICIT52682.2021.9491781(2021)
De Leeuw, J.A., Woltjer, H., Kool, R.B.: Identification of factors influencing the adoption of health information technology by nurses who are digitally lagging: In-depth interview study. J. Med. Internet Res. 22(8), e15630 (2020). https://doi.org/10.2196/15630
Article PubMed PubMed Central Google Scholar
Engin, M., Gürses, F.: Adoption of hospital information systems in public hospitals in Turkey: an analysis with the unified theory of acceptance and use of technology model. Int. J. Innovation Technol. Manag. 16(6), 1950043 (2019). https://doi.org/10.1142/S0219877019500433
Feibert, D.C., Jacobsen, P.: Factors impacting technology adoption in hospital bed logistics. Int. J. Logist. Manag. 30(1), 195–230 (2019). https://doi.org/10.1108/IJLM-02-2017-0043
Gomes, D.S., dos Santos, R.C., Gontijo, T.L., de Oliveira, V.C., Guimarães, E.A.A., Cavalcante, R.B.: Implementation of the electronic medical record based on the theory of the innovation diffusion: a case study. Online Brazilian J. Nurs. (2022). https://doi.org/10.17665/1676-4285.20226551
Greenhalgh, T., Wherton, J., Papoutsi, C., Lynch, J., Hughes, G., A’Court, C., Hinder, S., Fahy, N., Procter, R., Shaw, S.: Beyond adoption: A new framework for theorizing and evaluating nonadoption, abandonment, and challenges to the scale-up, spread, and sustainability of health and care technologies. J. Med. Internet Res. 19(11), e8775 (2017). https://doi.org/10.2196/jmir.8775
Gu, D., Khan, S., Khan, I.U., Khan, S.U., Xie, Y., Li, X., Zhang, G.: Assessing the adoption of e-health technology in a developing country: an extension of the UTAUT model. SAGE Open 11(3), 21582440211027564 (2021). https://doi.org/10.1177/21582440211027565
Haggstrom, D.A., Lee, J.L., Dickinson, S.L., Kianersi, S., Roberts, J.L., Teal, E., Baker, L.B., Rawl, S.M.: Rural and urban differences in the adoption of new health information and medical technologies. J. Rural Health 35(2), 144–154 (2019). https://doi.org/10.1111/jrh.12358
Hua, D., Petrina, N., Young, N., Cho, J.-G., Poon, S.K.: Understanding the factors influencing acceptability of AI in medical imaging domains among healthcare professionals: a scoping review. Artif. Intell. Med. 147, 102698 (2024). https://doi.org/10.1016/j.artmed.2023.102698
Jahanbakhsh, M., Nazemi, Z., Mohammadi, F., Hasanzadeh, A.: A study of picture archiving and communication system adoption in one hospital: applying the unified theory of acceptance and use of technology model. J. Educ. Health Promot. 7, 103 (2018). https://doi.org/10.4103/jehp.jehp_149_17
Article PubMed PubMed Central Google Scholar
Kamal, S.A., Shafiq, M., Kakria, P.: Investigating acceptance of telemedicine services through an extended technology acceptance model (TAM). Technol. Soc. (2020). https://doi.org/10.1016/j.techsoc.2019.101212
Kukhareva, P.V., Weir, C., Del Fiol, G., Aarons, G.A., Taft, T.Y., Schlechter, C.R., Reese, T.J., Curran, R.L., Nanjo, C., Borbolla, D., Staes, C.J., Morgan, K.L., Kramer, H.S., Stipelman, C.H., Shakib, J.H., Flynn, M.C., Kawamoto, K.: Evaluation in life cycle of information technology (ELICIT) framework: supporting the innovation life cycle from business case assessment to summative evaluation. J. of Biomed. Inf. (2022). https://doi.org/10.1016/j.jbi.2022.104014
Kukhareva, P.V., Weir, C., Del Fiol, G., Aarons, G.A., Taft, T.Y., Schlechter, C.R., Reese, T.J., Curran, R.L., Nanjo, C., Borbolla, D., Staes, C.J., Morgan, K.L., Kramer, H.S., Stipelman, C.H., Shakib, J.H., Flynn, M.C., Kawamoto, K.: Evaluation in life cycle of information technology (ELICIT) framework: supporting the innovation life cycle from business case assessment to summative evaluation. J. of Biomed. Inf. (2022). https://doi.org/10.1016/j.jbi.2022.104014
Liverani, M., Ir, P., Perel, P., Khan, M., Balabanova, D., Wiseman, V.: Assessing the potential of wearable health monitors for health system strengthening in low- and middle-income countries: a prospective study of technology adoption in Cambodia. Health Policy Plan. 37(8), 943–951 (2022). https://doi.org/10.1093/heapol/czac019
Article PubMed PubMed Central Google Scholar
De Mauro, A., Greco, M., & Grimaldi, M. What is Big Data? A Consensual Definition and a Review of Key Research Topics. https://doi.org/10.13140/2.1.2341.5048(2014).
Melia, R., Monahan, L., Duggan, J., Bogue, J., O’Sullivan, M., Young, K., Chambers, D., McInerney, S.: Exploring the experiences of mental health professionals engaged in the adoption of mobile health technology in Irish mental health services. BMC Psychiatry (2021). https://doi.org/10.1186/s12888-021-03426-5
Article PubMed PubMed Central Google Scholar
Miles, R.C., Onega, T., Lee, C.I.: Addressing potential health disparities in the adoption of advanced breast imaging technologies. Acad. Radiol. 25(5), 547–551 (2018). https://doi.org/10.1016/j.acra.2017.05.021
Article PubMed PubMed Central Google Scholar
Miranda, R., Oliveira, M.D., Baptista, F.M., Albuquerque, I.: Telemonitoring in Portugal: where do we stand and which way forward? Health Policy 131, 104761 (2023). https://doi.org/10.1016/j.healthpol.2023.104761
Moullin, J.C., Dickson, K.S., Stadnick, N.A., Rabin, B., Aarons, G.A.: Systematic review of the exploration, preparation, implementation, sustainment (EPIS) framework. Implement. Sci. (2019). https://doi.org/10.1186/s13012-018-0842-6
Article PubMed PubMed Central Google Scholar
Ogwel, B., Otieno, G., Odhiambo-Otieno, G.: Cloud computing adoption by public hospitals in kenya: a technological, organisational and behavioural perspective. Int. J. Sci. Res. Publ. (IJSRP) 10(1), p9707 (2020). https://doi.org/10.29322/IJSRP.10.01.2020.p9707
Östlund, B., Frennert, S., Funk, M., Gonzalez-Vargas, J., Baur, K., Alimisis, D., Thorsteinsson, F., Alonso-Cepeda, A., Fau, G., Haufe, F., Di Pardo, M., Moreno, J.C.: Interactive robots for health in Europe: Technology readiness and adoption potential. Technol. Readiness Adopt. Potential Front Public Health 11, 979225 (2023). https://doi.org/10.3389/fpubh.2023.979225
Palos-Sanchez, P., Reyes-Menendez, A., Saura, J.R.: Models of adoption of information technology and cloud computing in organizations. Inform. Tecnol. 30(3), 3–12 (2019). https://doi.org/10.4067/S0718-07642019000300003
Powell, K.R., Farmer, M., Liu, J., Alexander, G.L.: A survey of technology abandonment in US nursing homes. J. Am. Med. Dir. Assoc. (2023). https://doi.org/10.1016/j.jamda.2023.09.002
Comments (0)