Sun, K., Dong, J., Sun, H., Wang, X., Fang, J., Zhuang, Z., Tian, S., and Sun, X., Nat. Catal., 2023, vol. 6, p. 1164. https://doi.org/10.1038/s41929-023-01047-7
Yan, L., Li, P., Zhu, Q., Kumar, A., Sun, K., Tian, S., and Sun, X., Chem, 2023, vol. 9, p. 280. https://doi.org/10.1016/j.chempr.2023.01.003
Ko, Y., Kim, K., Yoo, J., Kwon, G., Park, H., Kim, J., Lee, B., Song, J.-H., Kim, J., and Kang, K., Energy Environ. Sci., 2023, vol.16, p. 5525. https://doi.org/10.1039/D3EE02880A
Zou, H., Shu, S., Yang, W., Chu, Y.-C., Cheng, M., Dong, H., Liu, H., Li, F., Hu, J., Wang, Z., Liu, W., Chen, H.M., and Duan, L., Nat. Commun., 2024, vol. 15, p. 10818. https://doi.org/10.1038/s41467-024-55116-x
Article CAS PubMed PubMed Central Google Scholar
Jiang, Y., Lu, Y., Wang, X., Bao, Y., Chen, W., and Niu, L., Nanoscale, 2014, vol. 6, p. 15066. https://doi.org/10.1039/C4NR04295F
Article CAS PubMed Google Scholar
Li, P., Jiao, Y., Ruan, Y., Fei, H., Men, Y., Guo, C., Wu, Y., and Chen, S., Nat. Commun., 2023, vol. 14, p. 6923. https://doi.org/10.1038/s41467-023-42749-7
Qiu, X., Wang, Y., and Shao, M., Joule, 2024, vol. 8, p. 881. https://doi.org/10.1016/j.joule.2024.03.018
Feng, J., Cai, R., Magliocca, E., Luo, H., Higgins, L., Romario, G.L.F., Liang, X., Pedersen, A., Xu, Z., Guo, Z., Periasamy, A., Brett, D., Miller, T.S., Haigh, S.J., Mishra, B., and Titirici, M.-M., Adv. Funct. Mater., 2021, vol. 31, p. 2102974. https://doi.org/10.1002/adfm.202102974
Liu, L., Rao, X., Zhang, S., and Zhang, J., Chem, 2024, vol. 10, p. 1994. https://doi.org/10.1016/j.chempr.2024.06.006
Zhang, H., Osgood, H., Xie, X., Shao, Y., and Wu, G., Nano Energy, 2017, vol. 31, p. 331. https://doi.org/10.1016/j.nanoen.2016.11.033
Li, G., Zhang, J., Li, W., Fan, K., and Xu, C., Nanoscale, 2018, vol. 10, p. 9252. https://doi.org/10.1039/C8NR02337A
Article CAS PubMed Google Scholar
Salunkhe, R.R., Tang, J., Kamachi, Y., Nakato, T., Kim, J.H., and Yamauchi, Y., ACS Nano, 2015, vol. 9, p. 6288. https://doi.org/10.1021/acsnano.5b01790
Article CAS PubMed Google Scholar
Guo, J., Ghen, B., Hao, Q., Nie, J., Ma, G., Appl. Surf. Sc., 2018, vol. 456, p. 959. https://doi.org/10.1016/j.apsusc.2018.05.210
Wu, Y., Zhao, S., Zhao, K., Tu, T., Zheng, J., Chen, J., Zhou, H., Chen, D., and Li, S., J. Power Sources, 2016, vol. 311, p. 137. https://doi.org/10.1016/j.jpowsour.2016.02.020
Cao, L., Li, Z., Gu, Y., Li, D.-h., Su, K.-m., Yang, D.-j., and Cheng, B.-W., J. Mater. Chem. (A), 2017, vol. 5, p. 11340. https://doi.org/10.1039/C7TA03097E
Mahmood, A., Guo, W., Tabassum, H., and Zou, R., Adv. Energy Mater., 2016, vol. 6, p. 1600423. https://doi.org/10.1002/aenm.201600423
Proietti, E., Jaouen, F., Lefèvre, M., Larouche, N., Tian, J., Herranz, J., and Dodelet, J.-P., Nat. Commun., 2011, vol. 2, p. 416. https://doi.org/10.1038/ncomms1427
Article CAS PubMed Google Scholar
Zhang, G., Chenitz, R., Lefèvre, M., Sun, S., and Dodelet, J.-P., Nano Energy, 2016, vol. 29, p. 111. https://doi.org/10.1016/j.nanoen.2016.02.038
Shi, X., Song, J., Zhao, F., Gao, H., Chen, X., Chen, P., An, Z., and Chen, Y., J. Colloid Interface Sci., 2019, vol. 533, p. 569. https://doi.org/10.1016/j.jcis.2018.08.103
Article CAS PubMed Google Scholar
Xie, D., Ma, Y., Gu, Y., Zhou, H., Zhang, H., Wang, G., Zhang, Y., and Zhao, H., J. Mater. Chem. (A), 2017, vol. 5, p. 23794. https://doi.org/10.1039/C7TA07934F
Wang, X., Zhang, H., Lin, H., Gupta, S., Wang, C., Tao, Z., Fu, H., Wang, T., Zheng, J., Wu, G., and Li, X., Nano Energy, 2016, vol. 25, p. 110. https://doi.org/10.1016/j.nanoen.2016.04.042
Dresselhaus, M.S., Dresselhaus, G., Saito, R. and Jorio, A., Phys. Rep., 2005, vol. 409, p. 47. https://doi.org/10.1016/j.physrep.2004.10.006
Segmehl, J.S., Tobias, K., Artem, K., Berg, J.K., Willa, C., and Burgert, I., Spectrochim. Acta (A), 2019, vol. 206, p. 177. https://doi.org/10.1016/j.saa.2018.07.080
Yuan, B., Wang, X., Zhou, X. Xiao, J., and Li, Z., Chem. Eng. J., 2019, vol. 355, p. 679. https://doi.org/10.1016/j.cej.2018.08.201
Artyushkova, K., Kiefer, B., Halevi, B., Knop-Gericke, A., Schlogl, R., and Atanassov, P., Chem. Commun., 2013, vols. 49, p. 2539. https://doi.org/10.1039/C3CC40324F
Masa, J., Xia, W., Muhler, M., and Schuhmann, W., Angew. Chem. Int. Ed., 2015, vol. 54, p. 10102. https://doi.org/10.1002/anie.201500569
Yang, W., Liu, X., Yue, X., Jia, J., and Guo, S., J. Am. Chem. Soc., 2015, vol. 137, p. 1436. https://doi.org/10.1021/ja5129132
Article CAS PubMed Google Scholar
Naveen, M.H., Shim, K., Hossain, M.S.A., Kim, J.H., and Shim, Y.-B., Adv. Energy Mater., 2017, vol. 7, p. 1602002. https://doi.org/10.1002/aenm.201602002
Collman, J.P., Denisevich, P., Konai, Y., Marrocco, M., Koval, C., and Anson, F.C., J. Am. Chem. Soc., 1980, vol. 102, p. 6027. https://doi.org/10.1021/ja00539a009
Tse, E.C.M., Barile, C.J., Kirchschlager, N.A., Li, Y., Gewargis, J.P., Zimmerman, S.C., Hosseini, A., and Gewirth, A.A., Nat. Mater., 2016, vol. 15, p. 754. https://doi.org/10.1038/nmat4636
Comments (0)