Bjørklund, G., Shanaida, M., Lysiuk, R., Antonyak, H., Klishch, I., Shanaida, V., and Peana, M., Molecules, 2022, vol. 27, no. 19, p. 6613. https://doi.org/10.3390/molecules27196613
Article CAS PubMed PubMed Central Google Scholar
May, S.W., Exp. Opin. Invest. Drugs, 2002, vol. 11, no. 9, p. 1261. https://doi.org/10.1517/13543784.11.9.1261
Nogueira, C.W. and Rocha, J.B., Arch. Toxicol., 2011, vol. 85, p. 1313. https://doi.org/10.1007/s00204-011-0720-3
Article CAS PubMed Google Scholar
Fan, A.M. and Vinceti, M., Selenium and Its Compounds, in Hamilton & Hardy’s Industrial Toxicology, 2015, pp. 205–228. https://doi.org/10.1002/9781118834015.ch30
Misra, S., Boylan, M., Selvam, A., Spallholz, J.E., and Björnstedt, M., Nutrients, 2015, vol. 7, no. 5, p. 3536. https://doi.org/10.3390/nu7053536
Article CAS PubMed PubMed Central Google Scholar
Oykova, T., Mihov, D., and Pavlova, P., Cryst. Res. Technol., 1991, vol. 26, no. 8, p. 1071. https://doi.org/10.1002/crat.2170260820
Oykova, T. and Mihov, D., Cryst. Res. Technol., 1992, vol. 27, no. 5, p. 697. https://doi.org/10.1002/crat.2170270522
Christov, C., Ojkova, T., and Mihov, D., J. Chem. Thermodyn., 1998, vol. 30, no. 1, p. 73. https://doi.org/10.1006/jcht.1997.0274
Ojkova, T., Christov, C., and Mihov, D., Z. Phys. Chem., 1998, vol. 203, p. 87. https://doi.org/10.1524/zpch.1998.203.Part_1_2.087
Ojkova, T., Christov, C., and Mihov, D., Monatsh. Chem., 1999, vol. 130, no. 9, p. 1061. https://doi.org/10.1007/PL00010283
Tognetti, V. and Joubert, L., Phys. Chem. Chem. Phys., 2014, vol. 16, no. 28, p. 14539. https://doi.org/10.1039/C3CP55526G
Article CAS PubMed Google Scholar
Bader, R.F. and Essén, H., J. Chem. Phys., 1984, vol. 80, no. 5, p. 1943. https://doi.org/10.1063/1.446956
Kohn, W. and Sham, L.J., Phys. Rev., 1965, vol. 140, p. A1133. https://doi.org/10.1103/PhysRev.140.A1133
Baran, J., Lis, T., Marchewka, M., and Ratajczak, H., J. Mol. Struct., 1991, vol. 250, no. 1, p. 13. https://doi.org/10.1016/0022-2860(91)80119-O
Xue, D. and Ratajczak, H., Chem. Phys. Lett., 2003, vol. 371, nos. 5–6, p. 601. https://doi.org/10.1016/S0009-2614(03)00317-8
Lim, A.R. and Lim, K.Y., Physica B, 2007, vol. 390, p. 91. https://doi.org/10.1016/j.physb.2006.07.068
Bader, R.F., Acc. Chem. Res., 1985, vol. 18, no. 1, p. 9. https://doi.org/10.1021/ar00109a003
Kumar, P.S.V., Raghavendra, V., and Subramanian, V., J. Chem. Sci., 2016, vol. 128, p. 1527. https://doi.org/10.1007/s12039-016-1172-3
Yankova, R. and Yotova, T., Chem. Data Collect., 2022, vol. 42, p. 100947. https://doi.org/10.1016/j.cdc.2022.100947
Tsenov, T., Yotova, T., and Yankova, R., Oxid. Commun., 2023, vol. 46, p. 345.
Yankova, R., Tankov, I., Mihov, D., and Kostadinova, A., J. Mol. Struct., 2022, vol. 1268, p. 133712. https://doi.org/10.1016/j.molstruc.2022.133712
Yankova, R., Genieva, S., Halachev, N., and Dimitrova, G., J. Mol. Struct., 2016, vol. 1106, p. 82. https://doi.org/10.1016/j.molstruc.2015.10.091
Yankova, R. and Tankov, I., J. Mol. Struct., 2021, vol. 1224, p. 129047. https://doi.org/10.1016/j.molstruc.2020.129047
Weinhold, F., Landis, C.R., and Glendening, E.D., Int. Rev. Phys. Chem., 2016, vol. 35, no. 3, p. 399. https://doi.org/10.1080/0144235X.2016.1192262
Landis, C.R. and Weinhold, F., The Chemical Bond: Fundamental Aspects of Chemical Bonding, 2014, ch. 3, p. 91. https://doi.org/10.1002/9783527664696.ch3
Suresh, C.H., Remya, G.S., and Anjalikrishna, P.K., Wiley Interdiscip. Rev. Comput. Mol. Sci., 2022, vol. 12, no. 5, p. e1601. https://doi.org/10.1002/wcms.1601
Politzer, P., Lane, P., Concha, M.C., Ma, Y., and Murray, J.S., J. Mol. Model., 2007, vol. 13, p. 305. https://doi.org/10.1007/s00894-006-0154-7
Article CAS PubMed Google Scholar
Parr, R.G. and Yang, W., J. Am. Chem. Soc., 1984, vol. 106, no. 14, p. 4049. https://doi.org/10.1021/ja00326a036
Aihara, J.I., Theor. Chem. Acc., 1999, vol. 102, p. 134. https://doi.org/10.1007/s002140050483
Ruiz-Morales, Y., J. Phys. Chem. A, 2002, vol. 106, p. 11283. https://doi.org/10.1021/jp021152e
Tankov, I. and Yankova, R., J. Chem. Technol. Metall., 2021, vol. 56, p. 467.
Yankova, R., Genieva, S., Dimitrova, G., and Stancheva, M., J. Chem. Technol. Metall., 2019, vol. 54, p. 1240.
Parr, R.G., Szentpály, L., and Liu, S., J. Am. Chem. Soc., 1999, vol. 121, p. 1922. https://doi.org/10.1021/ja983494x
Lu, L., Int. J. Quantum Chem., 2015, vol. 115, p. 502. https://doi.org/10.1002/qua.24876
Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Petersson, G.A., Nakatsuji, H., et al., Gaussian 16, Revision C.01, Gaussian, Inc., Wallingford CT, 2016.
Dennington, R.D., Keith, T.A., and Millam, J.M., GaussView, version 6.0.16, Semichem Inc., Shawnee Mission KS, 2016.
Glendening, E.D., Landis, C.R., and Weinhold, F., Wiley Interdiscip. Rev. Comput. Mol. Sci., 2012, vol. 2, no. 1, p. 1. https://doi.org/10.1002/wcms.51
Lu, T. and Chen, F., J. Comput. Chem., 2012, vol. 33, p. 580. https://doi.org/10.1002/jcc.22885
Article CAS PubMed Google Scholar
Chidiebere, C.W., Duru, C.E., and Mbagwu, J.C., J. Niger. Soc. Phys. Sci., 2021, vol. 3, p. 292. https://doi.org/10.46481/jnsps.2021.347
Huang, Y., Rong, C., Zhang, R., and Liu, S., J. Mol. Model., 2017, vol. 23, p. 1. https://doi.org/10.1007/s00894-016-3175-x
Comments (0)