Robinson DT, Calkins KL, Chen Y, Cober MP, Falciglia GH, Church DD, et al. Guidelines for parenteral nutrition in preterm infants: The American Society for Parenteral and Enteral Nutrition. J Parenter Enter Nutr. 2023;47:830–58.
Deshpande GC, Cai W. Use of lipids in neonates requiring parenteral nutrition. J Parenter Enter Nutr. 2020;44:S45–S54.
Ottolini KM, Andescavage N, Limperopoulos C. Lipid intake and neurodevelopment in preterm infants. Neoreviews. 2021;22:e370–e81.
Bin-Nun A, Kassirer Y, Mimouni FB, Shchors I, Hammerman C. Head circumference growth is enhanced by SMOFlipid in preterm neonates. Am J Perinatol. 2020;37:1130–3.
Morgan C, McGowan P, Herwitker S, Hart AE, Turner MA. Postnatal head growth in preterm infants: a randomized controlled parenteral nutrition study. Pediatrics. 2014;133:e120–8.
Ottolini KM, Andescavage N, Kapse K, Jacobs M, Murnick J, VanderVeer R, et al. Early lipid intake improves cerebellar growth in very low-birth-weight preterm infants. J Parenter Enter Nutr. 2021;45:587–95.
Schneider J, Fischer Fumeaux CJ, Duerden EG, Guo T, Foong J, Graz MB, et al. Nutrient intake in the first two weeks of life and brain growth in preterm neonates. Pediatrics. 2018;141:e20172169.
De Nardo MC, Mario CD, Laccetta G, Boscarino G, Terrin G. Enteral and parenteral energy intake and neurodevelopment in preterm infants: a systematic review. Nutrition. 2022;97:111572.
Morgan C, Parry S, Park J, Tan M. Neurodevelopmental outcome in very preterm infants randomised to receive two different standardised, concentrated parenteral nutrition regimens. Nutrients. 2023;15:4741.
Morris EE, Miller NC, Marka NA, Super JL, Nagel EM, Gonzalez JD, et al. Randomized trial of early enhanced parenteral nutrition and later neurodevelopment in preterm infants. Nutrients. 2022;14:3890.
Terrin G, Boscarino G, Gasparini C, Di Chiara M, Faccioli F, Onesta E, et al. Energy-enhanced parenteral nutrition and neurodevelopment of preterm newborns: a cohort study. Nutrition. 2021;89:111219.
Article PubMed CAS Google Scholar
Anderson PJ. Predicting neurodevelopmental outcome in children born very preterm - does neonatal MRI have a role? Pediatr Res. 2023;94:868–9.
Article PubMed PubMed Central Google Scholar
Gire C, Berbis J, Dequin M, Marret S, Muller JB, Saliba E, et al. A correlation between magnetic resonance spectroscopy (1-H MRS) and the neurodevelopment of two-year-olds born preterm in an EPIRMEX cohort study. Front Pediatr. 2022;10:936130.
Article PubMed PubMed Central Google Scholar
Laccetta G, De Nardo MC, Cellitti R, Angeloni U, Terrin G. 1)H-magnetic resonance spectroscopy and its role in predicting neurodevelopmental impairment in preterm neonates: a systematic review. Neuroradiol J. 2022;35:667–77.
Brouwer MJ, Kersbergen KJ, van Kooij BJM, Benders M, van Haastert IC, Koopman-Esseboom C, et al. Preterm brain injury on term-equivalent age MRI in relation to perinatal factors and neurodevelopmental outcome at two years. PLoS One. 2017;12:e0177128.
Article PubMed PubMed Central Google Scholar
Brossard-Racine M, Limperopoulos C. Cerebellar injury in premature neonates: Imaging findings and relationship with outcome. Semin Perinatol. 2021;45:151470.
Garfinkle J, Guo T, Synnes A, Chau V, Branson HM, Ufkes S, et al. Location and size of preterm cerebellar hemorrhage and childhood development. Ann Neurol. 2020;88:1095–108.
Stipdonk LW, Boumeester M, Pieterman KJ, Franken MJP, Rosmalen JV, Reiss IK, et al. Cerebellar volumes and language functions in school-aged children born very preterm. Pediatr Res. 2021;90:853–60.
Kidokoro H, Neil JJ, Inder TE. New MR imaging assessment tool to define brain abnormalities in very preterm infants at term. Am J Neuroradiol. 2013;34:2208–14.
Article PubMed PubMed Central CAS Google Scholar
Neu J. Necrotizing enterocolitis: the search for a unifying pathogenic theory leading to prevention. Pediatr Clin North Am. 1996;43:409–32.
Article PubMed PubMed Central CAS Google Scholar
Coviello C, Keunen K, Kersbergen KJ, Groenendaal F, Leemans A, Peels B, et al. Effects of early nutrition and growth on brain volumes, white matter microstructure, and neurodevelopmental outcome in preterm newborns. Pediatr Res. 2018;83:102–10.
Jensen EA, Dysart K, Gantz MG, McDonald S, Bamat NA, Keszler M, et al. The diagnosis of bronchopulmonary dysplasia in very preterm infants. an evidence-based approach. Am J Respir Crit Care Med. 2019;200:751–9.
Article PubMed PubMed Central CAS Google Scholar
Bottomley PA. Spatial localization in NMR spectroscopy in vivo. Ann N. Y Acad Sci. 1987;508:333–48.
Article PubMed CAS Google Scholar
Basu SK, Pradhan S, Jacobs MB, Said M, Kapse K, Murnick J, et al. Age and sex influences gamma-aminobutyric acid concentrations in the developing brain of very premature infants. Sci Rep. 2020;10:10549.
Article PubMed PubMed Central CAS Google Scholar
Basu SK, Pradhan S, Sharker YM, Kapse KJ, Murnick J, Chang T, et al. Severity of prematurity and age impact early postnatal development of GABA and glutamate systems. Cereb Cortex. 2023;33:7386–94.
Article PubMed PubMed Central Google Scholar
You W, Serag A, Evangelou IE, Andescavage N, Limperopoulos C. Robust motion correction and outlier rejection of in vivo functional MR images of the fetal brain and placenta during maternal hyperoxia. Proc SPIE Int Soc Opt Eng. 2015;9417:941700.
PubMed PubMed Central Google Scholar
Provencher SW. Automatic quantitation of localized in vivo 1H spectra with LCModel. NMR Biomed. 2001;14:260–4.
Article PubMed CAS Google Scholar
Basu SK, Kapse KJ, Murnick J, Pradhan S, Spoehr E, Zhang A, et al. Impact of bronchopulmonary dysplasia on brain GABA concentrations in preterm infants: Prospective cohort study. Early Hum Dev. 2023;186:105860.
Article PubMed PubMed Central CAS Google Scholar
Kreis R. The trouble with quality filtering based on relative Cramér-Rao lower bounds. Magn Reson Med. 2016;75:15–8.
Tanifuji S, Akasaka M, Kamei A, Araya N, Asami M, Matsumoto A, et al. Temporal brain metabolite changes in preterm infants with normal development. Brain Dev. 2017;39:196–202.
Makropoulos A, Gousias IS, Ledig C, Aljabar P, Serag A, Hajnal JV, et al. Automatic whole brain MRI segmentation of the developing neonatal brain. IEEE Trans Med Imaging. 2014;33:1818–31.
Andescavage NN, du Plessis A, McCarter R, Serag A, Evangelou I, Vezina G, et al. Complex trajectories of brain development in the healthy human fetus. Cereb Cortex. 2017;27:5274–83.
Andescavage NN, DuPlessis A, McCarter R, Vezina G, Robertson R, Limperopoulos C. Cerebrospinal Fluid and Parenchymal Brain Development and Growth in the Healthy Fetus. Dev Neurosci. 2016;38:420–9.
Article PubMed CAS Google Scholar
Limperopoulos C, Soul JS, Gauvreau K, Huppi PS, Warfield SK, Bassan H, et al. Late gestation cerebellar growth is rapid and impeded by premature birth. Pediatrics. 2005;115:688–95.
Zun Z, Kapse K, Jacobs M, Basu S, Said M, Andersen N, et al. Longitudinal trajectories of regional cerebral blood flow in very preterm infants during third trimester ex utero development assessed with MRI. Radiology. 2021;299:691–702.
Hui SCN, Andescavage N, Limperopoulos C. The role of proton magnetic resonance spectroscopy in neonatal and fetal brain research. J Magn Reson Imaging. 2025;61:2404–24.
Zasada M, Karcz P, Olszewska M, Kowalik A, Zasada W, Herman-Sucharska I, et al. Cerebral magnetic resonance spectroscopy–insights into preterm brain injury. J Perinatol. 2025;45:194–201.
Comments (0)