R. K. Iler, The Chemistry of Silica (NY, Wiley Interscience, 1979).
A. A. Chuiko (Ed.) Medical Chemistry and Clinical Application of Silicon Dioxide (Kiev, Nauk. Dumka, 2001) (in Russian).
V. M. Gunko, L. S. Andriyko, V. I. Zarko, A. I. Marynin, V. V. Olishevskiy, W. Janusz, Effects of dissolved metal chlorides on the behavior of Silica nanoparticles in aqueous media, Central European J. Chem, 12(4), 480, (2014); https://doi.org/10.2478/s11532-013-0386-1.
R. J. Hunter, Zeta potential in Colloid Science: Principles and Applications (Academic Press, 1981).
M. Kosmulski, Positive electrokinetic charge of silica in the presence of chlorides, J. Colloid Interface Sci, 208(2), 543 (1998); https://doi.org/10.1006/jcis.1998.5859.
J. Lyklema, Fundamentals of Interface and Colloid Science, Vol. 1, (Academic Press, 1991).
C. Pfeiffer, C. Rehbock, D. Hühn, C. Carrillo-Carrion, D. J. de Aberasturi, V. Merk, S. Barcikowski, W.J. Parak, , Interaction of colloidal nanoparticles with their local environment: the (ionic) nanoenvironment around nanoparticles is different from bulk and determines the physico-chemical properties of the nanoparticles, J. R. Soc., Interface, 11(96), 20130931 (2014); ttps://doi.org/10.1098/rsif.2013.0931.
M. Kosmulski, J. B. Rosenholm, High ionic strength electrokinetics, Ad. Colloid Interface Sci, 112(1-3), 93 (2004); https://doi.org/10.1016/j.cis.2004.09.005.
G. V. Franks, Zeta Potentials and Yield Stresses of Silica Suspensions in Concentrated Monovalent Electrolytes: Isoelectric Point Shift and Additional Attraction, J. Colloid Interface Sci, 249 (1), 44 (2002); https://doi.org/10.1006/jcis.2002.8250.
L. S. Аndriyko, V. I. Zarko, А. I. Маrynin, V. V. Olishevskyi, А. А. Кravchenko, Е. M. Demjanenko, Zeta potential and aggregation degree of silica nanoparticles in presents of dissolved metal chlorides in aqueous media, Nanosist. Nanomater. Nanotehnol, 13(3), 389 (2015).
L.S. Andriyko, V.I. Zarko, V.M. Gun’ko, A.I. Marynin, V.V.Olishevskiy, E. Skwarek, Electrical and physical characteristics of silica nanoparticles in aqueous media affected by cations Na+, Ba2+, and Al3+, Adsorpt. Sci. Technol .33(6-8), 601 (2015); https://doi.org/10.1260/0263-6174.33.6-8.601.
M. Kosmulski, Surface Charging and Points of Zero Charge, (CRC Press, Boca Raton, FL, 2009).
S. K. Milonjic L. S. Cerovi, D. M. Cokeša, S. Zec, The influence of cationic impurities in silica on its crystallization and point of zero charge, J. Colloid Interface Sci, 309(1), 115 (2007); https://doi.org/10.1016/j.jcis.2006.12.033.
T. Zuyi, Z. Hongxia, Acidity and alkali metal adsorption on the SiO2-aqueous solution interface, J Colloid Interface Sci, 252(1), 15 (2002); https://doi.org/10.1006/jcis.2002.8277.
V. M. Gun’ko, V. I. Zarko, R. Leboda, E. Chibovski, Aqueous suspension of fumed oxides: particle size distribution and zeta potential, Adv. Colloid Interface Sci, 91(1), 1 (2001); https://doi.org/10.1016/S0001-8686(99)00026-3.
L. Musilová, A. Mráček, V. Kašpárková et al, Effect of Hofmeister Ions on Transport Properties of Aqueous Solutions of Sodium Hyaluronate, J. Mol. Sci, 22(4), 1932 (2021); https://doi.org/10.3390/ijms22041932
Casimiro, C. Weijers, D. Scheepers, Z. Borneman, K. Nijmeijer, Kosmotropes and chaotropes: Specific ion effects to tailor layer-by-layer membrane characteristics and performances, J. Membr. Sc, 672, 121446 (2023); https://doi.org/10.1016/j.memsci.2023.121446.
H.A. Barnes, J. Nonnewton. Thixotropy – a review, Fluid Mech, 70(1-2), 1 (1997); https://doi.org/10.1016/S0377-0257(97)00004-9.
T. van Vliet, J. Lyklema, Rheology. In J. Lyklema (Ed.), Fundamentals of Colloid and Interface Science. Vol. IV: Particulate Colloids (pp. 6.1-6.88) (Elsevier, 2005)
O.V. Goncharuk, L.S. Andriyko, M.L. Malysheva, O.I. Korotychc, A.I. Marynin, V. I. Zarko, A. I. Ukrainets, V. M. Gun’ko. Influence of Indifferent Electrolytes on Formation of Coagulative Structures in Aqueous Silica Dispersions, French-Ukrainian Journal of Chemistry, 5(2), 40 (2017); https://doi.org/10.17721/fujcV5I2P40-48.
M J. Kadhim, M. I. Gamaj, Estimation of the Diffusion Coefficient and Hydrodynamic Radius (Stokes Radius) for Inorganic Ions in Solution Depending on Molar Conductivity as Electro-Analytical Technique-A Review, J. of Chem. Rev, 2(3), 182 (2020); https://doi.org/10.33945/SAMI/JCR.2020.3.5.
Comments (0)