Utilizing Machine Learning to Predict the Charge Storage Capability of Lithium-Ion Battery Materials

(1) A.G. Olabi, Q. Abbas, P.A. Shinde, M.A. Abdelkareem, Rechargeable batteries: Technological advancement, challenges, current and emerging applications. Energy 266 (2023) 126408. Crossref

(2) S. Manzetti, F. Mariasiu, Electric vehicle battery technologies: From present state to future systems. Renew. Sustain. Energy Rev. 51 (2015) 1004–1012. Crossref

(3) J. Wen, D. Zhao, C. Zhang, An overview of electricity powered vehicles: Lithium-ion battery energy storage density and energy conversion efficiency. Renew. Energy 162 (2020) 1629–1648. Crossref

(4) Z. Huang, G. Du, Nickel-based batteries for medium- and large-scale energy storage, in: Advances in Batteries for Medium and Large-Scale Energy Storage, Elsevier, 2015, pp. 73–90. Crossref

(5) A. Ulvestad, A brief review of current lithium ion battery technology and potential solid state battery technologies, arXiv preprint arXiv:1803.04317 (2018).

(6) S. Sarmah, L. Lakhanlal, B.K. Kakati, D. Deka, Recent advancement in rechargeable battery technologies. Wiley Interdiscip. Rev.: Energy and Environ. 12 (2023) e461. Crossref

(7) I. Rakhimbek, N. Baikalov, A. Konarov, A. Mentbayeva, Y. Zhang, Z. Mansurov, M. Wakihara, Zh. Bakenov, Efficient Polysulfides Conversion Kinetics Enabled by Ni@CNF Interlayer for Lithium Sulfur Batteries. Eurasian Chem.-Technol. J. 25 (2023) 147–156. Crossref

(8) L. Lu, X. Han, J. Li, J. Hua, M. Ouyang, A review on the key issues for lithium-ion battery management in electric vehicles. J. Power Sources 226 (2013) 272–288. Crossref

(9) Z. Wei, Q. He, Y. Zhao, Machine learning for battery research. J. Power Sources 549 (2022) 232125. Crossref

(10) M.F. Ng, Y. Sun, Z.W. Seh, Machine learning-inspired battery material innovation. Energy Adv. 2 (2023) 449–464. Crossref

(11) M. Aykol, P. Herring, A. Anapolsky, Machine learning for continuous innovation in battery technologies. Nat. Rev. Mater. 5 (2020) 725–727. Crossref

(12) C. Lv, X. Zhou, L. Zhong, C. Yan, M. Srinivasan, Z.W. Seh, C. Liu, H. Pan, S. Li, Y. Wen, et al., Machine learning: an advanced platform for materials development and state prediction in lithium-ion batteries. Adv. Mater. 34 (2022) 2101474. Crossref

(13) N. Badi, A.R. Erra, F.C. Robles Hernandez, A.O. Okonkwo, M. Hobosyan, K.S. Martirosyan, Low-cost carbon-silicon nanocomposite anodes for lithium ion batteries. Nanoscale Res. Lett. 9 (2014) 1–8. Crossref

(14) K. Sawai, T. Ohzuku, Factors affecting rate capability of graphite electrodes for lithium-ion batteries. J. Electrochem. Soc. 150 (2003) A674. Crossref

(15) Q. Pang, X. Liang, A. Shyamsunder, L.F. Nazar, An in vivo formed solid electrolyte surface layer enables stable plating of li metal. Joule 1 (2017) 871–886. Crossref

(16) Y.Y. Mamyrbaeva, M.A. Hobosyan, S.E. Kumekov, K.S. Martirosyan, Preparation of lithium cobaltate and electrochemical features for cathode battery materials. Int. J. SHS 23 (2014) 1–8. Crossref

(17) Y. Zhang, L. Tao, C. Xie, D. Wang, Y. Zou, R. Chen, Y. Wang, C. Jia, S. Wang, Defect engineering on electrode materials for rechargeable batteries. Adv. Mater. 32 (2020) 1905923. Crossref

(18) D.-W. Chung, P.R. Shearing, N.P. Brandon, S.J. Harris, R.E. Garcia, Particle size polydispersity in li-ion batteries. J. Electrochem. Soc. 161 (2014) A422. Crossref

(19) J.M. Bhatt, Effect of Temperature on Battery Life and Performance in Electric Vehicle, Int. J. Sci. Res. 2 (10) (2013).

(20) J. Li, E. Murphy, J. Winnick, P.A. Kohl, Studies on the cycle life of commercial lithium ion batteries during rapid charge–discharge cycling. J. Power Sources 102 (2001) 294–301. Crossref

(21) A. Valizadeh, M.H. Amirhosseini, Machine Learning in Lithium-Ion Battery: Applications, Challenges, and Future Trends. SN Comput. Sci. 5 (2024) 717. Crossref

(22) D. Cheng, W. Sha, L. Wang, et al., Solid-state Lithium Battery Cycle Life Prediction using machine learning. Appl. Sci. 11 (2021) 4671. Crossref

(23) P. Sharma, B.J. Bora, A Review of Modern Machine Learning Techniques in the Prediction of Remaining Useful Life of Lithium-Ion Batteries. Batteries 9 (2022) 13. Crossref

(24) K. Schofer, F. Laufer, J. Stadler, et al., Machine learning-based lifetime prediction of Lithium-Ion cells. Adv. Sci. 9 (2022) 2200630. Crossref

(25) M.K. Tran, S. Panchal, V. Chauhan, N. Brahmbhatt, A. Mevawalla, R. Fraser, M. Fowler, Python-based scikit-learn machine learning models for thermal and electrical performance prediction of high capacity lithium-ion battery. Int. J. Energy Res. 46 (2022) 786–794. Crossref

(26) P. Fermín-Cueto, E. McTurk, M. Allerhand, et al., Identification and machine learning prediction of knee-point and knee-onset in capacity degradation curves of lithium-ion cells. Energy and AI 1 (2020) 100006. Crossref

(27) Y. Zhang, Y.-F. Li, Prognostics and health management of lithium-ion battery using deep learning methods: a review. Renew. Sustain. Energy Rev. 161 (2022) 112282. Crossref

(28) J. Zhao, X. Feng, Q. Pang, J. Wang, Y. Lian, M. Ouyang, A. F. Burke, Battery prognostics and health management from a machine learning perspective. J. Power Sources 581 (2023) 233474. Crossref

(29) A. Thelen, X. Huan, N. Paulson, S. Onori, Z. Hu, C. Hu, Probabilistic machine learning for battery health diagnostics and prognostics-review and perspectives. npj Mater. Sustain. 2 (2024) 14. Crossref

(30) S.-A. Amamra, Random Forest-Based Machine Learning Model Design for 21,700/5 Ah Lithium Cell Health Prediction Using Experimental Data, Physchem, 5 (2025) 12. Crossref

Comments (0)

No login
gif