Moossavi S, Miliku K, Sepehri S, Khafipour E, Azad MB. The prebiotic and probiotic properties of human milk: Implications for infant immune development and pediatric asthma. Front Pediatr. 2018;6:197. https://doi.org/10.3389/fped.2018.00197.
Article PubMed PubMed Central Google Scholar
Asnicar, F.; Manara, S.; Zolfo, M.; Truong, D.T.; Scholz, M.; Armanini, F.; et al. Studying vertical microbiome transmission from mothers to infants by strain-level metagenomic profiling. mSystems 2017; 2:e00164–16. https://doi.org/10.1128/mSystems.00164-16.
Biagi E, Quercia S, Aceti A, Beghetti I, Rampelli S, Turroni S, et al. The bacterial ecosystem of mother’s milk and infant’s mouth and gut. Front Microbiol. 2017;8:1214. https://doi.org/10.3389/fmicb.2017.01214.
Article PubMed PubMed Central Google Scholar
Biesbroek G, Bosch AATM, Wang X, Keijser BJF, Veenhoven RH, Sanders EAM, et al. The impact of breastfeeding on nasopharyngeal microbial communities in infants. Am J Respir Crit Care Med. 2014;190:298–308. https://doi.org/10.1164/rccm.201401-0073OC.
Ward TL, Hosid S, Ioshikhes I, Altosaar I. Human milk metagenome: A functional capacity analysis. BMC Microbiol. 2013;13:116. https://doi.org/10.1186/1471-2180-13-116.
Article PubMed PubMed Central Google Scholar
Li R, Tun HM, Jahan M, Zhang Z, Kumar A, Dilantha Fernando WG, et al. Comparison of DNA-, PMA-, and RNA-based 16S rRNA Illumina sequencing for detection of live bacteria in water. Sci Rep. 2017;7:5752. https://doi.org/10.1038/s41598-017-02516-3.
Article CAS PubMed PubMed Central Google Scholar
Wang Y, Yan Y, Thompson KN, Bae S, Accorsi EK, Zhang Y, et al. Whole microbial community viability is not quantitatively reflected by propidium monoazide sequencing approach. Microbiome. 2021;9:17. https://doi.org/10.1186/s40168-020-00961-3.
Article CAS PubMed PubMed Central Google Scholar
Nocker, A.; Cheung, C.-Y.; Camper, A.K. Comparison of propidium monoazide with ethidium monoazide for differentiation of live vs. dead bacteria by selective removal of DNA from dead cells. J Microbiol Methods 2006; 67:310–320. https://doi.org/10.1016/j.mimet.2006.04.015.
Turunen J, Tejesvi MV, Paalanne N, Hekkala J, Lindgren O, Kaakinen M, et al. Presence of distinctive microbiome in the first-pass meconium of newborn infants. Sci Rep. 2021;11:19449. https://doi.org/10.1038/s41598-021-98951-4.
Article CAS PubMed PubMed Central Google Scholar
Dong L, Liu H, Meng L, Xing M, Wang J, Wang C, et al. Quantitative PCR coupled with sodium dodecyl sulfate and propidium monoazide for detection of viable Staphylococcus aureus in milk. J Dairy Sci. 2018;101:4936–43. https://doi.org/10.3168/jds.2017-14087.
Article CAS PubMed Google Scholar
Miotto M, Barretta C, Ossai SO, da Silva HS, Kist A, Vieira CRW, et al. Optimization of a propidium monoazide-qPCR method for Escherichia coli quantification in raw seafood. Int J Food Microbiol. 2020;318: 108467. https://doi.org/10.1016/j.ijfoodmicro.2019.108467.
Article CAS PubMed Google Scholar
Stinson LF, Trevenen ML, Geddes DT. The viable microbiome of human milk differs from the metataxonomic profile. Nutrients. 2021;13:4445. https://doi.org/10.3390/nu13124445.
Article CAS PubMed PubMed Central Google Scholar
Schwab C, Voney E, Ramirez Garcia A, Vischer M, Lacroix C. Characterization of the cultivable microbiota in fresh and stored mature human breast milk. Front Microbiol. 2019;10:2666. https://doi.org/10.3389/fmicb.2019.02666.
Article PubMed PubMed Central Google Scholar
Stinson LF, Trevenen ML, Geddes DT. Effect of cold storage on the viable and total bacterial populations in human milk. Nutrients. 2022;14:1875. https://doi.org/10.3390/nu14091875.
Article CAS PubMed PubMed Central Google Scholar
Peters MDJ, McArthur A, Munn Z. Safe management of expressed breast milk: A systematic review. Women Birth. 2016;29:473–81. https://doi.org/10.1016/j.wombi.2016.05.007.
Becker, G.E.; Smith, H.A.; Cooney, F. Methods of milk expression for lactating women. Cochrane Database Syst Rev 2016; 9:CD006170. https://doi.org/10.1002/14651858.CD006170.pub5.
Kotásková I, Syrovátka V, Obručová H, Vídeňská P, Zwinsová B, Holá V, et al. Actinotignum schaalii: Relation to concomitants and connection to patients’ conditions in polymicrobial biofilms of urinary tract catheters and urines. Microorganisms. 2021;9:669. https://doi.org/10.3390/microorganisms9030669.
Article CAS PubMed PubMed Central Google Scholar
Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci U S A. 2011;108:4516–22. https://doi.org/10.1073/pnas.1000080107.
Straub D, Blackwell N, Langarica-Fuentes A, Peltzer A, Nahnsen S, Kleindienst S. Interpretations of environmental microbial community studies are biased by the selected 16S rRNA (gene) amplicon sequencing pipeline. Front Microbiol. 2020;11: 550420. https://doi.org/10.3389/fmicb.2020.550420.
Article PubMed PubMed Central Google Scholar
Grüning B, Dale R, Sjödin A, Chapman BA, Rowe J, Tomkins-Tinch CH, et al. Bioconda: Sustainable and comprehensive software distribution for the life sciences. Nat Methods. 2018;15:475–6. https://doi.org/10.1038/s41592-018-0046-7.
Article CAS PubMed PubMed Central Google Scholar
da Veiga Leprevost F, Grüning BA, Alves Aflitos S, Röst HL, Uszkoreit J, Barsnes H, et al. BioContainers: An open-source and community-driven framework for software standardization. Bioinformatics. 2017;33:2580–2. https://doi.org/10.1093/bioinformatics/btx192.
Article CAS PubMed PubMed Central Google Scholar
Babraham Bioinformatics. FastQC: A quality control tool for high throughput sequence data. Available from: https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ [Accessed 9 Apr 2024].
Ewels P, Magnusson M, Lundin S, Käller M. MultiQC: Summarize analysis results for multiple tools and samples in a single report. Bioinformatics. 2016;32:3047–8. https://doi.org/10.1093/bioinformatics/btw354.
Article CAS PubMed PubMed Central Google Scholar
Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3. https://doi.org/10.1038/nmeth.3869.
Article CAS PubMed PubMed Central Google Scholar
Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–6. https://doi.org/10.1093/nar/gks1219.
Article CAS PubMed Google Scholar
Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019;37:852–7. https://doi.org/10.1038/s41587-019-0209-9.
Article CAS PubMed PubMed Central Google Scholar
R Core Team. R: A language and environment for statistical computing. Available from: https://www.r-project.org/ [Accessed 7 Sep 2024].
Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin P, O’Hara B, et al. vegan: Community ecology package. R package version. 2015;2:2–1.
Gloor GB, Macklaim JM, Fernandes AD. Displaying variation in large datasets: A visual summary of effect sizes. J Comput Graph Stat. 2016. https://doi.org/10.1080/10618600.2015.1131161.
Paradis E, Schliep K. ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics. 2019;35:526–8.
Article CAS PubMed Google Scholar
Wickham, H. ggplot2: Elegant graphics for data analysis. Springer; 2016. ISBN 978–3–319–24275–0.
Ahlmann-Eltze, C.; Patil, I. ggsignif: R package for displaying significance brackets for ggplot2. 2021.
Patil I. Visualizations with statistical details: The ggstatsplot approach. J Open Source Softw. 2021;6:3167. https://doi.org/10.21105/joss.03167.
Comments (0)