Distribution of the motoneuronal pools controlling the hindlimb muscles in the lumbar spinal cord of the

Amidei C, Salmaso L, Bellio S, Saia M (2022) Epidemiology of traumatic spinal cord injury: a large population-based study. Spinal Cord 60:812–819. https://doi.org/10.1038/s41393-022-00795-w

Article  Google Scholar 

Baan GC, Maas H (2023) Three-dimensional interactive graphical model of the hindlimb muscles of the rat. Cells Tissues Organs 212:215–219. https://doi.org/10.1159/000523708

Article  PubMed  Google Scholar 

Bácskai T, Rusznák Z, Paxinos G, Watson C (2013) Musculotopic organization of the motor neurons supplying the mouse hindlimb muscles: a quantitative study using fluoro-gold retrograde tracing. Brain Struct Funct 219:303–321. https://doi.org/10.1007/s00429-012-0501-7

Article  PubMed  Google Scholar 

Capogrosso M, Milekovic T, Borton D et al (2016) A brain-spine interface alleviating gait deficits after spinal cord injury in primates. Nature 539:284–288. https://doi.org/10.1038/nature20118

Article  PubMed  PubMed Central  Google Scholar 

Catela C, Shin MM, Dasen JS (2015) Assembly and function of spinal circuits for motor control. Annu Rev Cell Dev Biol 31:669–698. https://doi.org/10.1146/annurev-cellbio-100814-125155

Article  CAS  PubMed  Google Scholar 

Charles JP, Cappellari O, Spence AJ et al (2016a) Muscle moment arms and sensitivity analysis of a mouse hindlimb musculoskeletal model. J Anat 229:514–535. https://doi.org/10.1111/joa.12461

Article  PubMed  PubMed Central  Google Scholar 

Charles JP, Cappellari O, Spence AJ et al (2016b) Musculoskeletal geometry, muscle architecture and functional specialisations of the mouse hindlimb. PLoS ONE 11:e0147669. https://doi.org/10.1371/journal.pone.0147669

Article  CAS  PubMed  PubMed Central  Google Scholar 

Clavenzani P, Scapolo PA, Callegari E et al (1994) Motoneuron organisation of the muscles of the spinal accessory complex of the sheep investigated with the fluorescent retrograde tracer technique. J Anat 184:381–385

PubMed  PubMed Central  Google Scholar 

Coonan JR, Bartlett PF, Galea MP (2003) Role of EphA4 in defining the position of a motoneuron pool within the spinal cord. J Comp Neurol 458:98–111. https://doi.org/10.1002/cne.10571

Article  CAS  PubMed  Google Scholar 

Dasen JS, Jessell TM (2009) Hox networks and the origins of motor neuron diversity. Curr Top Dev Biol 88:169–200. https://doi.org/10.1016/S0070-2153(09)88006-X

Article  CAS  PubMed  Google Scholar 

DiGiovanna J, Dominici N, Friedli L et al (2016) Engagement of the rat hindlimb motor cortex across natural locomotor behaviors. J Neurosci 36:10440–10455. https://doi.org/10.1523/JNEUROSCI.4343-15.2016

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fritz N, Illert M, Saggau P (1986) Location of motoneurones projecting to the cat distal forelimb. I. deep radial motornuclei. J Comp Neurol 244:286–301. https://doi.org/10.1002/cne.902440303

Article  CAS  PubMed  Google Scholar 

Gerrits PO, Boers J, Holstege G (1997) The lumbar cord location of the motoneurons innervating psoas and iliacus muscles: a single and double labeling study in the female Syrian golden hamster. Neurosci Lett 237:125–128. https://doi.org/10.1016/s0304-3940(97)00842-2

Article  CAS  PubMed  Google Scholar 

Gramsbergen A, Ijkema-Paassen J, Westerga J, Geisler HC (1996) Dendrite bundles in motoneuronal pools of trunk and extremity muscles in the rat. Exp Neurol 137:34–42. https://doi.org/10.1006/exnr.1996.0004

Article  CAS  PubMed  Google Scholar 

Greene EC (1963) Anatomy of the rat. Hafner Pub, New York, p 1935

Google Scholar 

Gross C, Ellison B, Buchman AS et al (2017) A novel approach for assigning levels to monkey and human lumbosacral spinal cord based on ventral horn morphology. PLoS ONE 12:e0177243. https://doi.org/10.1371/journal.pone.0177243

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kuypers HGJM, Huisman AM (1984) Fluorescent neuronal tracers. Advances in cellular neurobiology. Elsevier, pp 307–340

Google Scholar 

Hoover JE, Durkovic RG (1991) Morphological relationships among extensor digitorum longus, tibialis anterior, and semitendinosus motor nuclei of the cat: an investigation employing the retrograde transport of multiple fluorescent tracers. J Comp Neurol 303:255–266. https://doi.org/10.1002/cne.903030208

Article  CAS  PubMed  Google Scholar 

Huang C, Wang S, Deng J et al (2024) A “messenger zone hypothesis” based on the visual three-dimensional spatial distribution of motoneurons innervating deep limb muscles. Neural Regen Res 19:1559–1567. https://doi.org/10.4103/1673-5374.387972

Article  PubMed  Google Scholar 

Ichiyama RM, Broman J, Edgerton VR, Havton LA (2006) Ultrastructural synaptic features differ between alpha- and gamma-motoneurons innervating the tibialis anterior muscle in the rat. J Comp Neurol 499:306–315. https://doi.org/10.1002/cne.21110

Article  PubMed  Google Scholar 

Ireland Z, Dickinson H, Fleiss B et al (2010) Behavioural effects of near-term acute fetal hypoxia in a small precocial animal, the spiny mouse (Acomys cahirinus). Neonatology 97:45–51. https://doi.org/10.1159/000227293

Article  PubMed  Google Scholar 

Ishihara A, Roy RR, Edgerton VR (1995) Succinate dehydrogenase activity and soma size of motoneurons innervating different portions of the rat tibialis anterior. Neuroscience 68:813–822. https://doi.org/10.1016/0306-4522(95)00165-f

Article  CAS  PubMed  Google Scholar 

Kiehn O (2006) Locomotor circuits in the mammalian spinal cord. Annu Rev Neurosci 29:279–306. https://doi.org/10.1146/annurev.neuro.29.051605.112910

Article  CAS  PubMed  Google Scholar 

Ko H-Y (2022) Management and rehabilitation of spinal cord injuries. Springer Nature Singapore, Singapore

Book  Google Scholar 

McHanwell S, Biscoe TJ (1981) The localization of motoneurons supplying the hindlimb muscles of the mouse. Philos Trans R Soc Lond B Biol Sci 293:477–508. https://doi.org/10.1098/rstb.1981.0082

Article  CAS  PubMed  Google Scholar 

Merkulyeva N (2024) Comparative review of the brain development in Acomys cahirinus. Neurosci Biobehav Rev 167:105939. https://doi.org/10.1016/j.neubiorev.2024.105939

Article  PubMed  Google Scholar 

Merkulyeva N, Mikhalkin A, Veshchitskii A (2024) Inner structure of the lateral geniculate complex of adult and newborn Acomys cahirinus. Int J Mol Sci 25:7855. https://doi.org/10.3390/ijms25147855

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mesulam MM (1976) The blue reaction product in horseradish peroxidase neurohistochemistry: incubation parameters and visibility. J Histochem Cytochem 24:1273–1280. https://doi.org/10.1177/24.12.63512

Article  CAS  PubMed  Google Scholar 

Mierzejewska-Krzyżowska B, Bukowska D, Taborowska M, Celichowski J (2014) Sex differences in the number and size of motoneurons innervating rat medial gastrocnemius muscle. Anat Histol Embryol 43:182–189. https://doi.org/10.1111/ahe.12060

Article  PubMed  Google Scholar 

Miyata H, Kawai Y (1992) Localization and soma diameter of rat gluteus medius motoneurons. Comp Biochem Physiol Comp Physiol 102:111–116

Article  CAS  PubMed  Google Scholar 

Mohan R, Tosolini AP, Morris R (2014) Targeting the motor end plates in the mouse hindlimb gives access to a greater number of spinal cord motor neurons: an approach to maximize retrograde transport. Neuroscience 274:318–330. https://doi.org/10.1016/j.neuroscience.2014.05.045

Article  CAS  PubMed 

Comments (0)

No login
gif