Quantitative tractography: joys and sorrows

Battocchio M, Schiavi S, Descoteaux M, Daducci A (2022) Bundle-o-graphy: improving structural connectivity estimation with adaptive microstructure-informed tractography. NeuroImage, 263, 119600. https://doi.org/10.1016/j.neuroimage.2022.119600

Bells S, Cercignani M, Deoni S, Assaf Y (2011) Tractometry– comprehensive multi-modal quantitative assessment of white matter along specific tracts. Proceedings of the International Society for Magnetic Resonance in Medicine.

Bosticardo S, Battocchio M, Schiavi S, Granziera C, Daducci A (2023) A multi-compartment model for pathological connectomes. Proc. Intl. Soc. Mag. Reson. Med. 31, 963. https://doi.org/10.58530/2023/0963

Bosticardo S, Battocchio M, Schiavi S, Zalesky A, Granziera C, Daducci A (2025) A multi-compartment model for pathological connectomes. Network Neuroscience, In Press

Bullmore E, Sporns O (2009) Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci. https://doi.org/10.1038/nrn2575

Article  PubMed  Google Scholar 

Daducci A, Schiavi S, Christiaens D, Smith R, Alexander DC (2024) Global tractography. In A. Dell’Acqua, Flavio and Descoteaux, Maxime and Leemans (Ed.), Handbook of Diffusion MR Tractography (1st ed.). Elsevier. https://doi.org/10.1016/B978-0-12-818894-1.00014-8

Dell’Acqua F, Descoteaux M, Leemans A (2024) Handbook of Diffusion MR Tractography: Imaging Methods, Biophysical Models, Algorithms and Applications (1st ed.). Academic Press https://doi.org/10.1016/C2018-0-02520-7

Gabusi I, Battocchio M, Bosticardo S, Schiavi S, Daducci A (2024) Blurred streamlines: A novel representation to reduce redundancy in tractography. Medical Image Analysis, 93. https://doi.org/10.1016/j.media.2024.103101

Girard G, Caminiti R, Battaglia-Mayer A, St-Onge E, Ambrosen KS, Eskildsen SF, Krug K, Dyrby TB, Descoteaux M, Thiran J-P, Innocenti GM (2020) On the cortical connectivity in the macaque brain: A comparison of diffusion tractography and histological tracing data. NeuroImage, 221, 117201. https://doi.org/10.1016/j.neuroimage.2020.117201

Jones DK (2010) Challenges and limitations of quantifying brain connectivity in vivo with diffusion MRI. In Imaging in Medicine. https://doi.org/10.2217/iim.10.21

Jones DK, Knösche TR, Turner R (2013) White matter integrity, fiber count, and other fallacies: The do’s and don’ts of diffusion MRI. In NeuroImage. https://doi.org/10.1016/j.neuroimage.2012.06.081

Maffei C, Girard G, Schilling KG, Aydogan DB, Adluru N, Zhylka A, Wu Y, Mancini M, Hamamci A, Sarica A, Teillac A, Baete SH, Karimi D, Yeh FC, Yildiz ME, Gholipour A, Bihan-Poudec Y, Hiba B, Quattrone A, Yendiki A (2022) Insights from the IronTract challenge: optimal methods for mapping brain pathways from multi-shell diffusion MRI. NeuroImage 257. https://doi.org/10.1016/j.neuroimage.2022.119327

Maier-Hein KH, Neher PF, Houde J-C, Côté M-A, Garyfallidis E, Zhong J, Chamberland M, Yeh F-C, Lin Y-C, Ji Q, Reddick WE, Glass JO, Chen DQ, Feng Y, Gao C, Wu Y, Ma J, Renjie H, Li Q, Descoteaux M (2017) The challenge of mapping the human connectome based on diffusion tractography. Nat Commun 8(1):1349 https://doi.org/10.1038/s41467-017-01285-x

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sarwar T, Ramamohanarao K, Daducci A, Schiavi S, Smith RE, Zalesky A (2023) Evaluation of tractogram filtering methods using human-like connectome phantoms. NeuroImage 281. https://doi.org/10.1016/j.neuroimage.2023.120376

Schiavi S, Azzari A, Mensi A, Nicole G, Daducci A, Bicego M, Inglese M, Petracca M (2022) Classification of multiple sclerosis patients based on structural disconnection: a robust feature selection approach. J Neuroimaging. https://doi.org/10.1111/jon.12991

Article  PubMed  PubMed Central  Google Scholar 

Schilling KGKG, Nath V, Hansen C, Parvathaneni P, Blaber J, Gao Y, Neher P, Aydogan DBDB, Shi Y, Ocampo-Pineda M, Schiavi S, Daducci A, Girard G, Barakovic M, Rafael-Patino J, Romascano D, Rensonnet G, Pizzolato M, Bates A, Landman BABA (2019) Limits to anatomical accuracy of diffusion tractography using modern approaches. NeuroImage 185:1–11. https://doi.org/10.1016/j.neuroimage.2018.10.029

Article  PubMed  Google Scholar 

Smith R, Raffelt D, Tournier J-D, Connelly A (2020) Quantitative streamlines tractography: methods and inter-subject normalisation. OSF Preprints. https://doi.org/10.31219/osf.io/c67kn. Misc

Article  Google Scholar 

Sporns O, Tononi G, Kötter R (2005) The human connectome: A structural description of the human brain. PLoS Comput Biol 1(4). https://doi.org/10.1371/journal.pcbi.0010042

Thomas C, Ye FQ, Okan Irfanoglu M, Modi P, Saleem KS, Leopold DA, Pierpaoli C (2014) Anatomical accuracy of brain connections derived from diffusion MRI tractography is inherently limited. Proc Natl Acad Sci. https://doi.org/10.1073/pnas.1405672111

Article  PubMed  PubMed Central  Google Scholar 

Yeh C-H, Jones DK, Liang X, Descoteaux M, Connelly A (2020) Mapping Structural Connectivity Using Diffusion MRI: Challenges and Opportunities. Journal of Magnetic Resonance Imaging,. https://doi.org/10.1002/jmri.27188

Zalesky A, Fornito A, Cocchi L, Gollo LL, van den Heuvel MP, Breakspear M (2016) Connectome sensitivity or specificity: which is more important? NeuroImage. https://doi.org/10.1016/j.neuroimage.2016.06.035

Zalesky A, Sarwar T, Ramamohanarao K (2020) A cautionary note on the use of SIFT in pathological connectomes. Magn Reson Med 83(3):791–794. https://doi.org/10.1002/mrm.28037

Article  PubMed  Google Scholar 

Zhang F, Daducci A, He Y, Schiavi S, Seguin C, Smith RE, Yeh C-H, Zhao T, O’Donnell LJ, O’Donnell LJ (2022) Quantitative mapping of the brain’s structural connectivity using diffusion MRI tractography: A review. NeuroImage 249:118870 https://doi.org/10.1016/j.neuroimage.2021.118870

Article  PubMed  Google Scholar 

Comments (0)

No login
gif