Human Induced Pluripotent Stem Cells for Advancing Regenerative Medicine in Space

Arzt M, Jenkins A, Sharma A.Stem Cell Biology and Tissue Engineering in Space. In V. Hessel, J. Stoudemire, H. Miyamoto, and I. D. Fisk (Eds.), In-Space Manufacturing and Resources: Earth and Planetary Exploration Applications. (2022) Wiley-VCH GmbH.

Pendergraft JG, Carter DR, Tseng S, Landon LB, Slack KJ, Shuffler ML. Learning from the past to advance the future: The adaptation and resilience of NASA’s spaceflight multiteam systems across four eras of spaceflight. Front Psychol. 2019;10:1633. https://doi.org/10.3389/fpsyg.2019.01633.

Article  PubMed  PubMed Central  Google Scholar 

Williams D, Kuipers A, Mukai C, Thirsk R. Acclimation during space flight: effects on human physiology. CMAJ. 2009;180(13):1317–23. https://doi.org/10.1503/cmaj.090628.

Article  PubMed  PubMed Central  Google Scholar 

Arzt M, Mozneb M, Escopete S, Moses J, Sharma A. The benefits of stem cell biology and tissue engineering in low-earth orbit. Stem Cells and Dev. 2024;33(5–6):143–7. https://doi.org/10.1089/scd.2023.0291.

Article  Google Scholar 

Grimm D, Egli M, Kruger M, et al. Tissue engineering under microgravity conditions-use of stem cells and specialized cells. Stem Cells Dev. 2018;27(12):787–804. https://doi.org/10.1089/scd.2017.0242.

Article  PubMed  Google Scholar 

Mozneb M, Arzt M, Mesci P, Martin DM, Pohlman S, Lawless G, Doraisingam S, Al Neyadi S, Barnawi R, Al Qarni A, Whitson PA. Surface tension enables induced pluripotent stem cell culture in commercially available hardware during spaceflight. NPJ Microgravity. 2024;10(1):97. https://doi.org/10.1038/s41526-024-00435-y.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chehelgerdi M, Behdarvand Dehkordi F, Chehelgerdi M, Kabiri H, Salehian-Dehkordi H, Abdolvand M, Salmanizadeh S, Rashidi M, Niazmand A, Ahmadi S, Feizbakhshan S, Kabiri S, Vatandoost N, Ranjbarnejad T. Exploring the promising potential of induced pluripotent stem cells in cancer research and therapy. Mol Cancer. 2023;22(1):189. https://doi.org/10.1186/s12943-023-01873-0.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–76. https://doi.org/10.1016/j.cell.2006.07.024.

Article  CAS  PubMed  Google Scholar 

Stadtfeld M, Hochedlinger K. Induced pluripotency: history, mechanisms, and applications. Genes Dev. 2010;24(20):2239–63. https://doi.org/10.1101/gad.1963910.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rowe RG, Daley GQ. Induced pluripotent stem cells in disease modelling and drug discovery. Nat Rev Genet. 2019;20(7):377–88. https://doi.org/10.1038/s41576-019-0100-z.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Omole AE, Fakoya AOJ. Ten years of progress and promise of induced pluripotent stem cells: historical origins, characteristics, mechanisms, limitations, and potential applications. PeerJ. 2018;6:e4370. https://doi.org/10.7717/peerj.4370.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Saha K, Jaenisch R. Technical challenges in using human induced pluripotent stem cells to model disease. Cell Stem Cell. 2009;5(6):584–95. https://doi.org/10.1016/j.stem.2009.11.009.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Koivumäki JT, Naumenko N, Tuomainen T, Takalo J, Oksanen M, Puttonen KA, Lehtonen Š, Kuusisto J, Laakso M, Koistinaho J, Tavi P. Structural immaturity of human ipsc-derived cardiomyocytes: In silico investigation of effects on function and disease modeling. Front Physiol. 2018;9:80. https://doi.org/10.3389/fphys.2018.00080.

Article  PubMed  PubMed Central  Google Scholar 

Sharma A, Clemens RA, Garcia O, Taylor DL, Wagner NL, Shepard KA, Gupta A, Malany S, Grodzinsky AJ, Kearns-Jonker M, Mair DB. Biomanufacturing in low Earth orbit for regenerative medicine. Stem Cell Rep. 2022;17(1):1–3. https://doi.org/10.1016/j.stemcr.2021.12.001.

Article  Google Scholar 

da Silveira WA, Fazelinia H, Rosenthal SB, Laiakis EC, Kim MS, Meydan C, Kidane Y, Rathi KS, Smith SM, Stear B, Ying Y. Comprehensive Multi-omics Analysis Reveals Mitochondrial Stress as a Central Biological Hub for Spaceflight Impact. Cell. 2020;183(5):1185–201. https://doi.org/10.1016/j.cell.2020.11.002.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim S, Ayan B, Shayan M, Rando TA, Huang NF. Skeletal muscle-on-a-chip in microgravity as a platform for regeneration modeling and drug screening. Stem cell Rep. 2024;19(8):1061–73. https://doi.org/10.1016/j.stemcr.2024.06.010.

Article  CAS  Google Scholar 

Giulianotti MA, Low LA. Pharmaceutical research enabled through microgravity: perspectives on the use of the international space station US National laboratory. Pharm Res. 2019;37:1.

Article  PubMed  Google Scholar 

Wnorowski A, Sharma A, Chen H, Wu H, Shao NY, Sayed N, Liu C, Countryman S, Stodieck LS, Rubins KH, Wu SM, Lee PHU, Wu JC. Effects of Spaceflight on Human Induced Pluripotent Stem Cell-Derived Cardiomyocyte Structure and Function. Stem Cell Rep. 2019;13(6):960–9. https://doi.org/10.1016/j.stemcr.2019.10.006.

Article  CAS  Google Scholar 

Forghani P, Rashid A, Armand LC, et al. Simulated microgravity improves maturation of cardiomyocytes derived from human induced pluripotent stem cells. Sci Rep. 2024;14:2243. https://doi.org/10.1038/s41598-024-52453-1.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rampoldi A, Forghani P, Li D, Hwang H, Armand LC, Fite J, Boland G, Maxwell J, Maher K, Xu C. Space microgravity improves proliferation of human iPSC-derived cardiomyocytes. Stem Cell Rep. 2022;17(10):2272–85. https://doi.org/10.1016/j.stemcr.2022.08.007.

Article  CAS  Google Scholar 

Arzt M, Gao B, Mozneb M, Pohlman S, Cejas RB, Liu Q, Huang F, Yu C, Zhang Y, Fan X, Jenkins A, Giuliano AE, Burridge PW, Cui X, Sharma A. Protein-encapsulated doxorubicin reduces cardiotoxicity in hipsc-cardiomyocytes and cardiac spheroids while maintaining anticancer efficacy. Stem Cell Rep. 2023;18(10):1913–24. https://doi.org/10.1016/j.stemcr.2023.08.005.

Article  CAS  Google Scholar 

Andreeva E, Matveeva D, Zhidkova O, Zhivodernikov I, Kotov O, Buravkova L. Real and Simulated Microgravity: Focus on Mammalian Extracellular Matrix. Life (Basel, Switzerland). 2022;12(9):1343. https://doi.org/10.3390/life12091343.

Article  CAS  PubMed  Google Scholar 

Zhivodernikov IV, Ratushnyy AY, Matveeva DK, Buravkova LB. Extracellular matrix proteins and transcription of matrix-associated genes in mesenchymal stromal cells during modeling of the effects of microgravity. Bull Exp Biol Med. 2020;170(2):230–2.

Article  CAS  PubMed  Google Scholar 

Parfenov VA, Khesuani YD, Petrov SV, Karalkin PA, Koudan EV, Nezhurina EK, Pereira FD, Krokhmal AA, Gryadunova AA, Bulanova EA, Vakhrushev IV. Magnetic levitational bioassembly of 3D tissue construct in space. Sci Adv. 2020;6(29):eaba4174. https://doi.org/10.1126/sciadv.aba4174.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lo B, Parham L. Ethical issues in stem cell research. Endocr Rev. 2009;30(3):204–13. https://doi.org/10.1210/er.2008-0031.

Article  PubMed  PubMed Central  Google Scholar 

Arzt M, Pohlman S, Mozneb M, Sharma A. Chemically defined production of Tri-lineage human ipsc-derived cardiac spheroids. Curr Protoc. 2023;3(5):e767. https://doi.org/10.1002/cpz1.767.

Article  CAS  PubMed  PubMed Central  Google Scholar 

van den Brink L, Brandão KO, Yiangou L, Mol MPH, Grandela C, Mummery CL, Verkerk AO, Davis RP. Cryopreservation of human pluripotent stem cell-derived cardiomyocytes is not detrimental to their molecular and functional properties. Stem Cell Res. 2020;43:101698. https://doi.org/10.1016/j.scr.2019.101698.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Domino SE, Smith YR, Johnson TR. Opportunities and challenges of interdisciplinary research career development: implementation of a women’s health research training program. J Women’s Health (2002). 2007;16(2):256–61. https://doi.org/10.1089/jwh.2006.0129.

Article 

Comments (0)

No login
gif