Arzt M, Jenkins A, Sharma A.Stem Cell Biology and Tissue Engineering in Space. In V. Hessel, J. Stoudemire, H. Miyamoto, and I. D. Fisk (Eds.), In-Space Manufacturing and Resources: Earth and Planetary Exploration Applications. (2022) Wiley-VCH GmbH.
Pendergraft JG, Carter DR, Tseng S, Landon LB, Slack KJ, Shuffler ML. Learning from the past to advance the future: The adaptation and resilience of NASA’s spaceflight multiteam systems across four eras of spaceflight. Front Psychol. 2019;10:1633. https://doi.org/10.3389/fpsyg.2019.01633.
Article PubMed PubMed Central Google Scholar
Williams D, Kuipers A, Mukai C, Thirsk R. Acclimation during space flight: effects on human physiology. CMAJ. 2009;180(13):1317–23. https://doi.org/10.1503/cmaj.090628.
Article PubMed PubMed Central Google Scholar
Arzt M, Mozneb M, Escopete S, Moses J, Sharma A. The benefits of stem cell biology and tissue engineering in low-earth orbit. Stem Cells and Dev. 2024;33(5–6):143–7. https://doi.org/10.1089/scd.2023.0291.
Grimm D, Egli M, Kruger M, et al. Tissue engineering under microgravity conditions-use of stem cells and specialized cells. Stem Cells Dev. 2018;27(12):787–804. https://doi.org/10.1089/scd.2017.0242.
Mozneb M, Arzt M, Mesci P, Martin DM, Pohlman S, Lawless G, Doraisingam S, Al Neyadi S, Barnawi R, Al Qarni A, Whitson PA. Surface tension enables induced pluripotent stem cell culture in commercially available hardware during spaceflight. NPJ Microgravity. 2024;10(1):97. https://doi.org/10.1038/s41526-024-00435-y.
Article CAS PubMed PubMed Central Google Scholar
Chehelgerdi M, Behdarvand Dehkordi F, Chehelgerdi M, Kabiri H, Salehian-Dehkordi H, Abdolvand M, Salmanizadeh S, Rashidi M, Niazmand A, Ahmadi S, Feizbakhshan S, Kabiri S, Vatandoost N, Ranjbarnejad T. Exploring the promising potential of induced pluripotent stem cells in cancer research and therapy. Mol Cancer. 2023;22(1):189. https://doi.org/10.1186/s12943-023-01873-0.
Article CAS PubMed PubMed Central Google Scholar
Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–76. https://doi.org/10.1016/j.cell.2006.07.024.
Article CAS PubMed Google Scholar
Stadtfeld M, Hochedlinger K. Induced pluripotency: history, mechanisms, and applications. Genes Dev. 2010;24(20):2239–63. https://doi.org/10.1101/gad.1963910.
Article CAS PubMed PubMed Central Google Scholar
Rowe RG, Daley GQ. Induced pluripotent stem cells in disease modelling and drug discovery. Nat Rev Genet. 2019;20(7):377–88. https://doi.org/10.1038/s41576-019-0100-z.
Article CAS PubMed PubMed Central Google Scholar
Omole AE, Fakoya AOJ. Ten years of progress and promise of induced pluripotent stem cells: historical origins, characteristics, mechanisms, limitations, and potential applications. PeerJ. 2018;6:e4370. https://doi.org/10.7717/peerj.4370.
Article CAS PubMed PubMed Central Google Scholar
Saha K, Jaenisch R. Technical challenges in using human induced pluripotent stem cells to model disease. Cell Stem Cell. 2009;5(6):584–95. https://doi.org/10.1016/j.stem.2009.11.009.
Article CAS PubMed PubMed Central Google Scholar
Koivumäki JT, Naumenko N, Tuomainen T, Takalo J, Oksanen M, Puttonen KA, Lehtonen Š, Kuusisto J, Laakso M, Koistinaho J, Tavi P. Structural immaturity of human ipsc-derived cardiomyocytes: In silico investigation of effects on function and disease modeling. Front Physiol. 2018;9:80. https://doi.org/10.3389/fphys.2018.00080.
Article PubMed PubMed Central Google Scholar
Sharma A, Clemens RA, Garcia O, Taylor DL, Wagner NL, Shepard KA, Gupta A, Malany S, Grodzinsky AJ, Kearns-Jonker M, Mair DB. Biomanufacturing in low Earth orbit for regenerative medicine. Stem Cell Rep. 2022;17(1):1–3. https://doi.org/10.1016/j.stemcr.2021.12.001.
da Silveira WA, Fazelinia H, Rosenthal SB, Laiakis EC, Kim MS, Meydan C, Kidane Y, Rathi KS, Smith SM, Stear B, Ying Y. Comprehensive Multi-omics Analysis Reveals Mitochondrial Stress as a Central Biological Hub for Spaceflight Impact. Cell. 2020;183(5):1185–201. https://doi.org/10.1016/j.cell.2020.11.002.
Article CAS PubMed PubMed Central Google Scholar
Kim S, Ayan B, Shayan M, Rando TA, Huang NF. Skeletal muscle-on-a-chip in microgravity as a platform for regeneration modeling and drug screening. Stem cell Rep. 2024;19(8):1061–73. https://doi.org/10.1016/j.stemcr.2024.06.010.
Giulianotti MA, Low LA. Pharmaceutical research enabled through microgravity: perspectives on the use of the international space station US National laboratory. Pharm Res. 2019;37:1.
Wnorowski A, Sharma A, Chen H, Wu H, Shao NY, Sayed N, Liu C, Countryman S, Stodieck LS, Rubins KH, Wu SM, Lee PHU, Wu JC. Effects of Spaceflight on Human Induced Pluripotent Stem Cell-Derived Cardiomyocyte Structure and Function. Stem Cell Rep. 2019;13(6):960–9. https://doi.org/10.1016/j.stemcr.2019.10.006.
Forghani P, Rashid A, Armand LC, et al. Simulated microgravity improves maturation of cardiomyocytes derived from human induced pluripotent stem cells. Sci Rep. 2024;14:2243. https://doi.org/10.1038/s41598-024-52453-1.
Article CAS PubMed PubMed Central Google Scholar
Rampoldi A, Forghani P, Li D, Hwang H, Armand LC, Fite J, Boland G, Maxwell J, Maher K, Xu C. Space microgravity improves proliferation of human iPSC-derived cardiomyocytes. Stem Cell Rep. 2022;17(10):2272–85. https://doi.org/10.1016/j.stemcr.2022.08.007.
Arzt M, Gao B, Mozneb M, Pohlman S, Cejas RB, Liu Q, Huang F, Yu C, Zhang Y, Fan X, Jenkins A, Giuliano AE, Burridge PW, Cui X, Sharma A. Protein-encapsulated doxorubicin reduces cardiotoxicity in hipsc-cardiomyocytes and cardiac spheroids while maintaining anticancer efficacy. Stem Cell Rep. 2023;18(10):1913–24. https://doi.org/10.1016/j.stemcr.2023.08.005.
Andreeva E, Matveeva D, Zhidkova O, Zhivodernikov I, Kotov O, Buravkova L. Real and Simulated Microgravity: Focus on Mammalian Extracellular Matrix. Life (Basel, Switzerland). 2022;12(9):1343. https://doi.org/10.3390/life12091343.
Article CAS PubMed Google Scholar
Zhivodernikov IV, Ratushnyy AY, Matveeva DK, Buravkova LB. Extracellular matrix proteins and transcription of matrix-associated genes in mesenchymal stromal cells during modeling of the effects of microgravity. Bull Exp Biol Med. 2020;170(2):230–2.
Article CAS PubMed Google Scholar
Parfenov VA, Khesuani YD, Petrov SV, Karalkin PA, Koudan EV, Nezhurina EK, Pereira FD, Krokhmal AA, Gryadunova AA, Bulanova EA, Vakhrushev IV. Magnetic levitational bioassembly of 3D tissue construct in space. Sci Adv. 2020;6(29):eaba4174. https://doi.org/10.1126/sciadv.aba4174.
Article CAS PubMed PubMed Central Google Scholar
Lo B, Parham L. Ethical issues in stem cell research. Endocr Rev. 2009;30(3):204–13. https://doi.org/10.1210/er.2008-0031.
Article PubMed PubMed Central Google Scholar
Arzt M, Pohlman S, Mozneb M, Sharma A. Chemically defined production of Tri-lineage human ipsc-derived cardiac spheroids. Curr Protoc. 2023;3(5):e767. https://doi.org/10.1002/cpz1.767.
Article CAS PubMed PubMed Central Google Scholar
van den Brink L, Brandão KO, Yiangou L, Mol MPH, Grandela C, Mummery CL, Verkerk AO, Davis RP. Cryopreservation of human pluripotent stem cell-derived cardiomyocytes is not detrimental to their molecular and functional properties. Stem Cell Res. 2020;43:101698. https://doi.org/10.1016/j.scr.2019.101698.
Article CAS PubMed PubMed Central Google Scholar
Domino SE, Smith YR, Johnson TR. Opportunities and challenges of interdisciplinary research career development: implementation of a women’s health research training program. J Women’s Health (2002). 2007;16(2):256–61. https://doi.org/10.1089/jwh.2006.0129.
Comments (0)