1. Fernie KJ, Reynolds SJ. The effects of electromagnetic fields from power lines on avian reproductive biology and physiology: A review. J Toxicol Environ Health B Crit Rev 2005;8:127–140.
2. Israel M, Zaryabova V, Ivanova M. Electromagnetic field occupational exposure: Non-thermal vs. thermal effects. Electromagn Biol Med 2013;32:145–154.
3. Moon JH. Health effects of electromagnetic fields on children. Clin Exp Pediatr 2020;63:422–428.
4. Diab KA. The impact of the low frequency of the electromagnetic field on human. Adv Exp Med Biol 2020;1237:135–149.
5. Amoon AT, Arah OA, Kheifets L. The sensitivity of reported effects of EMF on childhood leukemia to uncontrolled confounding by residential mobility: A hybrid simulation study and an empirical analysis using CAPS data. Cancer Causes Control 2019;30:901–908.
6. Errico Provenzano A, Amatori S, Nasoni MG, Persico G, Russo S, Mastrogiacomo AR, et al. Effects of fifty-hertz electromagnetic fields on granulocytic differentiation of ATRA-treated acute promyelocytic leukemia NB4 cells. Cell Physiol Biochem 2018;46:389–400.
7. Carpenter DO. Extremely low frequency electromagnetic fields and cancer: How source of funding affects results. Environ Res 2019;178:108688.
8. Ahlbom A. Neurodegenerative diseases, suicide and depressive symptoms in relation to EMF. Bioelectromagnetics 2001;22:S132–S143.
9. Qiu C, Fratiglioni L, Karp A, Winblad B, Bellander T. Occupational exposure to electromagnetic fields and risk of Alzheimer’s disease. Epidemiology 2004;15:687–694.
10. Sobel E, Davanipour Z, Sulkava R, Erkinjuntti T, Wikstrom J, Henderson VW, et al. Occupations with exposure to electromagnetic fields: A possible risk factor for Alzheimer’s disease. Am J Epidemiol 1995;142:515–524.
11. Wilson BW. Chronic exposure to ELF fields may induce depression. Bioelectromagnetics 1988;9:195–205.
12. Wilson BW, Wright CW, Morris JE, Buschbom RL, Brown DP, Miller DL, et al. Evidence for an effect of ELF electromagnetic fields on human pineal gland function. J Pineal Res 1990;9:259–269.
13. Balik HH, Turgut-Balik D, Balikci K, Özcan IC. Some ocular symptoms and sensations experienced by long term users of mobile phones. Pathol Biol 2005;53:88–91.
14. Wessapan T, Rattanadecho P. Specific absorption rate and temperature increase in the human eye due to electromagnetic fields exposure at different frequencies. Int J Heat Mass Transf 2013;64:426–435.
15. Kramár P, Harris C, Guy AW. Thermal cataract formation in rabbits. Bioelectromagnetics 1987;8:397–406.
16. Pascolini D, Mariotti SP. Global estimates of visual impairment: 2010. Br J Ophthalmol 2012;96:614–618.
17. Robman L, Taylor H. External factors in the development of cataract. Eye 2005;19:1074–1082.
18. Bormusov E, P Andley U, Sharon N, Schächter L, Lahav A, Dovrat A. Non-thermal electromagnetic radiation damage to lens epithelium. Open Ophthalmol J 2008;2:102–106.
19. Karbassi M, Khu PM, Singer DM, Chylack LT Jr. Evaluation of lens opacities classification system III applied at the slitlamp. Optom Vis Sci 1993;70:923–928.
20. Hirata A, Matsuyama SI, Shiozawa T. Temperature rises in the human eye exposed to EM waves in the frequency range 0.6-6 GHz. IEEE Trans Electromagn Compat 2000;42:386–393.
21. Hirata A, Watanabe H, Shiozawa T. SAR and temperature increase in the human eye induced by obliquely incident plane waves. IEEE Trans Electromagn Compat 2002;44:592–594.
22. Keshvari J, Lang S. Comparison of radio frequency energy absorption in ear and eye region of children and adults at 900, 1800 and 2450 MHz. Phys Med Biol 2005;50:4355–4369.
23. Keshvari J, Keshvari R, Lang S. The effect of increase in dielectric values on specific absorption rate (SAR) in eye and head tissues following 900, 1800 and 2450 MHz radio frequency (RF) exposure. Phys Med Biol 2006;51:1463–1477.
24. Liu H, Chen G, Pan Y, Chen Z, Jin W, Sun C, et al. Occupational electromagnetic field exposures associated with sleep quality: A cross-sectional study. PLoS One 2014;9:e110825.
25. Stewart-DeHaan PJ, Creighton MO, Larsen LE, Jacobi JH, Ross WM, Sanwal M, et al. In vitro studies of microwaveinduced cataract: Separation of field and heating effects. Exp Eye Res 1983;36:75–90.
26. Cleary S. Microwave cataractogenesis. Proc IEEE 1980;68:49–55.
27. Kinoshita JH, Merola LO, Dikmak E, Carpenter RL. Biochemical changes in microwave cataracts. Doc Ophthalmol 1966;20:91–103.
28. Balci M, Devrim E, Durak I. Effects of mobile phones on oxidant/antioxidant balance in cornea and lens of rats. Curr Eye Res 2007;32:21–25.
29. Elder JA. Ocular effects of radiofrequency energy. Bioelectromagnetics 2003;24:S148–S161.
30. Wang Z, Wang L, Zheng S, Ding Z, Liu H, Jin W, et al. Effects of electromagnetic fields on serum lipids in workers of a power plant. Environ Sci Pollut Res Int 2016;23:2495–2504.
31. Chen D, Li Z, Huang J, Yu L, Liu S, Zhao YE. Lens nuclear opacity quantitation with long-range swept-source optical coherence tomography: Correlation to LOCS III and a Scheimpflug imaging-based grading system. Br J Ophthalmol 2019;103:1048–1053.
32. Pei X, Bao Y, Chen Y, Li X. Correlation of lens density measured using the Pentacam Scheimpflug system with the Lens Opacities Classification System III grading score and visual acuity in age-related nuclear cataract. Br J Ophthalmol 2008;92:1471–1475.
Comments (0)