Wu AM, Bisignano C, James SL, Abady GG, Abedi A, Abu-Gharbieh E, et al. Global, regional, and national burden of bone fractures in 204 countries and territories, 1990–2019: a systematic analysis from the Global Burden of Disease Study 2019. Lancet Healthy Longev. 2021;2(9):e580–92.
Agarwal-Harding KJ, Meara JG, Greenberg SLM, Hagander LE, Zurakowski D, Dyer GSM. Estimating the global incidence of femoral fracture from road traffic collisions a literature review: A literature review. Vol. 97, Journal of Bone and Joint Surgery - American Volume. Journal of Bone and Joint Surgery Inc.; 2015. p. e31.1-e31.9.
Bouxsein ML. Overview of Bone Structure and Strength. In: Genetics of Bone Biology and Skeletal Disease. Elsevier Inc.; 2013. p. 25–34.
Contents. J Hepatol. 2010;52(2):ix–x. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0168827809008319.
Kösters C, Lenschow S, Schulte-Zurhausen E, Roßlenbroich S, Raschke MJ, Schliemann B. Management of comminuted fractures of the distal humerus: clinical outcome after primary external fixation versus immediate fixation with locking plates. Arch Orthop Trauma Surg. 2017;137(12):1693–8.
Dall’Oca C, Maluta T, Lavini F, Bondi M, Micheloni GM, Bartolozzi P. Tibial plateau fractures: Compared outcomes between ARIF and ORIF. Strategies Trauma Limb Reconstr. 2012;7(3):163–75.
Article PubMed PubMed Central Google Scholar
Maalouly J, Aouad D, Dib N, Tawk A, El Rassi G. Simultaneous ORIF for bilateral comminuted proximal humerus fractures: Case report in an elderly patient. Int J Surg Case Rep. 2019;1(65):193–6.
Filip N, Radu I, Veliceasa B, Filip C, Pertea M, Clim A, et al. Biomaterials in Orthopedic Devices: Current Issues and Future Perspectives. Vol. 12, Coatings. MDPI; 2022.
Pujol N, Merrer J, Lemaire B, Boisrenoult P, Desmoineaux P, Oger P, et al. Unplanned return to theater: A quality of care and risk management index? Orthop Traumatol Surg Res. 2015;101(4):399–403.
Article CAS PubMed Google Scholar
Goswami DSC T. Stress Shielding in Cemented Hip Implants Assessed from Computed Tomography. Biomed J Sci Tech Res. 2019;18(3):13637–41.
Al-Shalawi FD, Mohamed Ariff AH, Jung DW, Mohd Ariffin MKA, Seng Kim CL, Brabazon D, et al. Biomaterials as Implants in the Orthopedic Field for Regenerative Medicine: Metal versus Synthetic Polymers. Vol. 15, Polymers. MDPI; 2023.
Yee DKH, Lau W, Tiu KL, Leung F, Fang E, Pineda JPS, et al. Cementation: for better or worse? Interim results of a multi-centre cohort study using a fenestrated spiral blade cephalomedullary device for pertrochanteric fractures in the elderly. Arch Orthop Trauma Surg. 2020;140(12):1957–64.
Hoogervorst LA, Oudelaar BW, Broekhuis D. An open comminuted tibia fracture including a 5 cm tibial bone defect in a child: Successful management using a locking compression plate. Trauma Case Rep. 2023;1:48.
Parsch D, Breitwieser T, Breusch SJ. Mechanical stability of structured bone grafts from the anterior iliac crest. Clin Biomech. 2008;23(7):955–60.
Chen IC, Su CY, Lai CC, Tsou YS, Zheng Y, Fang HW. Preparation and characterization of moldable demineralized bone matrix/calcium sulfate composite bone graft materials. J Funct Biomater. 2021;12(4).
MeimandiParizi A, Oryan A, Haddadi S, Bigham SA. Histopathological and biomechanical evaluation of bone healing properties of DBM and DBM-G90 in a rabbit model. Acta Orthop Traumatol Turc. 2015;49(6):683–9.
Boyd D, Towler MR, Wren A, Clarkin OM. Comparison of an experimental bone cement with surgical Simplex® P, Spineplex® and Cortoss®. In: Journal of Materials Science: Materials in Medicine. 2008. p. 1745–52.
Williams TD, Adler T, Smokoff L, Kaur A, Rodriguez B, Prakash KJ, et al. Bone Cements Used in Vertebral Augmentation: A State-of-the-art Narrative Review. Vol. 17, Journal of Pain Research. Dove Medical Press Ltd; 2024. p. 1029–40.
Tecres S.p.A. Cal-CEMEX Reinforced Bone Substitute: Product Catalogue. Verona (Italy): Tecres S.p.A.; rev. 00/13. Available from: https://www.tecres.it.
Maluta T, Lavagnolo U, Segalla L, Elena N, Bernardi P, Degl’innocenti D, et al. Evaluation of biocompatibility, osteointegration and biomechanical properties of the new Calcemex ® cement: An in vivo study. Vol. 66, European Journal of Histochemistry. 2022.
Pizzoli A, Bondi M, Piotto L, Tartaglia N, Saracino M, Vyrva O. Efficacy of Cal-Cemex as bone substitute for tibial plateau fractures. J Orthop Surg Res. 2023;18(1).
Brachet A, Bełżek A, Furtak D, Geworgjan Z, Tulej D, Kulczycka K, et al. Application of 3D Printing in Bone Grafts. Vol. 12, Cells. MDPI; 2023.
Fillingham YA, Jacobs J. Bone grafts and their substitutes. Bone Joint J. 2016;98-B(1 Suppl A):6–9. https://doi.org/10.1302/0301-620X.98B1.36350.
Stiel N, Moritz M, Babin K, Suling A, Rupprecht M, Beil FT, et al. The use of bovine xenogeneic bone graft for dega pelvic osteotomy in children with hip dysplasia: A retrospective study of 147 treated hips. J Clin Med. 2020;9(7):1–9.
Bracey DN, Cignetti NE, Jinnah AH, Stone A V., Gyr BM, Whitlock PW, et al. Bone xenotransplantation: A review of the history, orthopedic clinical literature, and a single-center case series. Vol. 27, Xenotransplantation. Blackwell Publishing Inc.; 2020.
Nauth A, Lane J, Watson JT, Giannoudis P. Bone Graft Substitution and Augmentation. 2015. Available from: http://journals.lww.com/jorthotrauma.
Valiyollahpoor-Amiri H, Esmaeilnejad-Ganji SM, Jokar R, Baghianimoghadam B, Kamali-Ahangar S, Bahrami-Feridoni M. Comparison of outcome of bone autograft and allograft in union of long bone fractures. Acta Medica Bulgarica. 2021;48(2):13–8.
Valtanen RS, Yang YP, Gurtner GC, Maloney WJ, Lowenberg DW. Synthetic and Bone tissue engineering graft substitutes: What is the future? Injury. 2021;1(52):S72–7.
Moore WR, Graves SE, Bain GI. Synthetic bone graft substitutes. Vol. 71, ANZ Journal of Surgery. Blackwell Publishing; 2001. p. 354–61.
Roberts TT, Rosenbaum AJ. Bone grafts, bone substitutes and orthobiologics the bridge between basic science and clinical advancements in fracture healing. Organogenesis. 2012;8(4):114–24.
Article PubMed PubMed Central Google Scholar
Biermann N, Prall WC, Böcker W, Mayr HO, Haasters F. Augmentation of plate osteosynthesis for proximal humeral fractures: a systematic review of current biomechanical and clinical studies. Vol. 139, Archives of Orthopaedic and Trauma Surgery. Springer Verlag; 2019. p. 1075–99.
Moreno-Garcia A, Rodriguez-Merchan EC. Orthobiologics: Current role in Orthopedic Surgery and Traumatology. Vol. 10, Archives of Bone and Joint Surgery. Mashhad University of Medical Sciences; 2022. p. 536–42.
Zamborsky R, Svec A, Bohac M, Kilian M, Kokavec M. Infection in bone allograft transplants. Vol. 14, Experimental and Clinical Transplantation. Baskent University; 2016. p. 484–90.
Yu D, Panesar PS, Delman C, Van BW, Wilson MD, Van LH, et al. Comparing Fusion Rates Between Fresh-Frozen and Freeze-Dried Allografts in Anterior Cervical Discectomy and Fusion. World Neurosurg X. 2022;1:16.
Della Valle A, Compagnoni R, Puglia F, Priano D, Menon A, Teani L, et al. Allografts use in orthopedic surgery: trend change over the past 11 years from a regional tissue bank. Cell Tissue Bank. 2024;25(2):713–20.
Dreyer CH, Rasmussen M, Pedersen RH, Overgaard S, Ding M. Comparisons of Efficacy between Autograft and Allograft on Defect Repair in Vivo in Normal and Osteoporotic Rats. Biomed Res Int. 2020;2020.
Choi SR, Kwon JW, Suk KS, Kim HS, Moon SH, Park SY, et al. The Clinical Use of Osteobiologic and Metallic Biomaterials in Orthopedic Surgery: The Present and the Future. Vol. 16, Materials. MDPI; 2023.
Pietrzak WS, editor. Musculoskeletal tissue regeneration: biological materials and methods. 1st ed. Orthopedic Biology and Medicine. Totowa: Humana Press; 2008:656. https://doi.org/10.1007/978-1-59745-239-7.
Bessa PC, Casal M, Reis RL. Bone morphogenetic proteins in tissue engineering: The road from the laboratory to the clinic, part I (basic concepts). Vol. 2, Journal of Tissue Engineering and Regenerative Medicine. John Wiley and Sons Ltd; 2008. p. 1–13.
Bessa PC, Casal M, Reis RL. Bone morphogenetic proteins in tissue engineering: The road from laboratory to clinic, part II (BMP delivery). Vol. 2, Journal of Tissue Engineering and Regenerative Medicine. John Wiley and Sons Ltd; 2008. p. 81–96.
Brink O. The choice between allograft or demineralized bone matrix is not unambiguous in trauma surgery. Injury. 2021;1(52):S23–8.
Kim DS, Lee DH, Chun YM, Shin SJ. Which additional augmented fixation procedure decreases surgical failure after proximal humeral fracture with medial comminution: fibular allograft or inferomedial screws? J Shoulder Elbow Surg. 2018;27(10):1852–8.
Phull SS, Rahimnejad Yazdi A, Ghert M, Towler MR, Ka L. Bone Cement as a Local Chemotherapeutic Drug Delivery Carrier in Orthopedic Oncology: A Review. J Bone Oncol. 2021;26:100345.
Ramanathan S, Lin YC, Thirumurugan S, Hu CC, Duann YF, Chung RJ. Poly(methyl methacrylate) in Orthopedics: Strategies, Challenges, and Prospects in Bone Tissue Engineering, vol. 16. Polymers: Multidisciplinary Digital Publishing Institute (MDPI); 2024.
Wang Q, Dong JF, Fang X, Chen Y. Application and modification of bone cement in vertebroplasty: A literature review. Jt Dis Relat Surg. 2022;33(2):467–78.
Article PubMed PubMed Central Google Scholar
9-Javad Parvizi MD, Brian Klatt MD - Essentials in Total Hip Arthroplasty-Slack Incorporated (2013).
Hasandoost L, Rodriguez O, Alhalawani A, Zalzal P, Schemitsch EH, Waldman SD, et al. The role of poly(methyl methacrylate) in management of bone loss and infection in revision total knee arthroplasty: A review. Vol. 11, Journal of Functional Biomaterials. MDPI AG; 2020.
Orr JF, Dunne NJ, Quinn JC. Shrinkage stresses in bone cement. Biomaterials. 2003;24(17):2933–40.
Article CAS PubMed Google Scholar
Wang Y, Shen S, Hu T, Williams GR, Bian Y, Feng B, et al. Layered Double Hydroxide Modified Bone Cement Promoting Osseointegration via Multiple Osteogenic Signal Pathways. ACS Nano. 2021;15(6):9732–45.
Article CAS PubMed Google Scholar
Prajapati SK, Malaiya A, Kesharwani P, Soni D, Jain A. Biomedical applications and toxicities of carbon nanotubes. Vol. 45, Drug and Chemical Toxicology. Taylor and Francis Ltd.; 2022. p. 435–50.
Toyokuni S. Genotoxicity and carcinogenicity risk of carbon nanotubes. Vol. 65, Advanced Drug Delivery Reviews. 2013. p. 2098–110.
Goodnough LH, Wadhwa H, Tigchelaar SS, DeBaun MR, Chen MJ, Graves ML, et al. Indications for cement augmentation in fixation of geriatric intertrochanteric femur fractures: a systematic review of evidence. Arch Orthop Trauma Surg. 2022;142(10):2533–44.
Yang FS, Lu Y Der, Wu CT, Blevins K, Lee MS, Kuo FC. Mechanical failure of articulating polymethylmethacrylate (PMMA) spacers in two-stage revision hip arthroplasty: The risk factors and the impact on interim function. BMC Musculoskelet Disord. 2019;20(1).
Agolah D. Unstable comminuted femoral fracture (gun shot sequel). Case study. 2023. https://radiopaedia.org/cases/unstable-comminuted-femoralfracture-gun-shot-sequel?lang=us.
Gillman CE, Jayasuriya AC. FDA-approved bone grafts and bone graft substitute devices in bone regeneration. Vol. 130, Materials Science and Engineering C. Elsevier Ltd; 2021.
Cheah CW, Al-Namnam NM, Lau MN, Lim GS, Raman R, Fairbairn P, et al. Synthetic material for bone, periodontal, and dental tissue regeneration: Where are we now, and where are we heading next? Vol. 14, Materials. MDPI; 2021.
Korzh MO, Makarov V. Surgical treatment of the proximal humerus fractures in patients with osteoporosis. Problematic issues and development prospects. Orthopaedics, Traumatology and Prosthetics. 2023;2023(1):86–99.
Jabran A, Peach C, Ren L. Biomechanical analysis of plate systems for proximal humerus fractures: A systematic literature review. Vol. 17, BioMedical Engineering Online. BioMed Central Ltd.; 2018.
Pernaa K, Koski I, Mattila K, Gullichsen E, Heikkilä J, Aho AJ, et al. Bioactive Glass S53P4 and Autograft Bone in Treatment of Depressed Tibial Plateau Fractures: A Prospective Randomized 11-Year Follow-Up. Vol. 21, Journal of Long-Term Effects of Medical Implants. 2011.
Kattimani VS, Kondaka S, Lingamaneni KP. Hydroxyapatite–-Past, Present, and Future in Bone Regeneration. Bone Tissue Regen Insights. 2016;7:BTRI.S36138.
Ielo I, Calabrese G, De Luca G, Conoci S. Recent Advances in Hydroxyapatite-Based Biocomposites for Bone Tissue Regeneration in Orthopedics. Vol. 23, International Journal of Molecular Sciences. MDPI; 2022.
Krishnamurithy G. A REVIEW ON HYDROXYAPATITE-BASED SCAFFOLDS AS A POTENTIAL BONE GRAFT SUBSTITUTE FOR BONE TISSUE ENGINEERING APPLICATIONS. Vol. 2013, JUMMEC.
Pokhrel S. Hydroxyapatite: Preparation, Properties and Its Biomedical Applications. Advances in Chemical Engineering and Science. 2018;08(04):225–40.
Alorku K, Manoj M, Yuan A. A plant-mediated synthesis of nanostructured hydroxyapatite for biomedical applications: A review. Vol. 10, RSC Advances. Royal Society of Chemistry; 2020. p. 40923–39.
Arifin A, Mahyudin F, Edward M. THE CLINICAL AND RADIOLOGICAL OUTCOME OF BOVINE HYDROXYAPATITE (BIO HYDROX) AS BONE GRAFT. (JOINTS) Journal Orthopaedi and Traumatology Surabaya. 2020;9(1):9.
Lodoso-Torrecilla I, van den Beucken JJJP, Jansen JA. Calcium phosphate cements: Optimization toward biodegradability. Vol. 119, Acta Biomaterialia. Acta Materialia Inc; 2021. p. 1–12.
Apelt D, Theiss F, El-Warrak AO, Zlinszky K, Bettschart-Wolfisberger R, Bohner M, et al. In vivo behavior of three different injectable hydraulic calcium phosphate cements. Biomaterials. 2004;25(7–8):1439–51.
Article CAS PubMed Google Scholar
Fada R, Farhadi Babadi N, Azimi R, Karimian M, Shahgholi M. Mechanical properties improvement and bone regeneration of calcium phosphate bone cement, Polymethyl methacrylate and glass ionomer. J Nanoanalysis. 2021;8(1):20. Available from: http://creativecommons.org/licenses/by/4.0/.
Xu HHK, Wang P, Wang L, Bao C, Chen Q, Weir MD, et al. Calcium phosphate cements for bone engineering and their biological properties, vol. 5. Bone Research: Sichuan University; 2017.
Schröter L, Kaiser F, Stein S, Gbureck U, Ignatius A. Biological and mechanical performance and degradation characteristics of calcium phosphate cements in large animals and humans. Vol. 117, Acta Biomaterialia. Acta Materialia Inc; 2020. p. 1–20.
Grosfeld EC, Hoekstra JWM, Herber RP, Ulrich DJO, Jansen JA, Van Den Beucken JJJP. Long-term biological performance of injectable and degradable calcium phosphate cement. Biomedical Materials (Bristol). 2017;12(1).
Liu D, Cui C, Chen W, Shi J, Li B, Chen S. Biodegradable Cements for Bone Regeneration. Vol. 14, Journal of Functional Biomaterials. MDPI; 2023.
Demir-Oğuz Ö, Boccaccini AR, Loca D. Injectable bone cements: What benefits the combination of calcium phosphates and bioactive glasses could bring? Vol. 19, Bioactive Materials. KeAi Communications Co.; 2023. p. 217–36.
Comments (0)