1. Kumar P, Aggarwal R. An overview of triple-negative breast cancer. Arch Gynecol Obstet. 2015;293(2):247-269.
2. Dilmac S, Ozpolat B. Mechanisms of PARP-Inhibitor-Resistance in BRCA-Mutated Breast Cancer and New Therapeutic Approaches. Cancers (Basel). 2023;15(14):3642.
3. Bruin MAC, Sonke GS, Beijnen JH, Huitema ADR. Pharmacokinetics and Pharmacodynamics of PARP Inhibitors in Oncology. Clin Pharmacokinet. 2022;61(12):1649-1675.
4. Al-Thani AN, Jan AG, Abbas M, Geetha M, Sadasivuni KK. Nanoparticles in cancer theragnostic and drug delivery: A comprehensive review. Life Sci. 2024;352:122899.
5. Derakhshan F, Reis-Filho JS. Pathogenesis of Triple-Negative Breast Cancer. Annu Rev Pathol. 2022;17:181-204.
6. Lee Y-M, Oh MH, Go J-H, Han K, Choi S-Y. Molecular subtypes of triple-negative breast cancer: understanding of subtype categories and clinical implication. Genes and Genomics. 2020;42(12):1381-1387.
7. Esquea EM, Reginato M. Targeting Metabolic Vulnerabilities in Breast Cancer Brain Metastasis: Drexel University Libraries.
8. Tsui J, Qi S, Perrino S, Leibovitch M, Brodt P. Identification of a Resistance Mechanism to IGF-IR Targeting in Human Triple Negative MDA-MB-231 Breast Cancer Cells. Biomolecules. 2021;11(4):527.
9. Pearson FE, Chang K, Minoda Y, Rojas IML, Haigh OL, Daraj G, et al. Activation of human CD141+ and CD1c+ dendritic cells in vivo with combined TLR3 and TLR7/8 ligation. Immunology and Cell Biology. 2018;96(4):390-400.
10. Yi H, Tan Y, Lu L, Tang F, Deng X. Immunotherapy of Triple-Negative Breast Cancer. Triple-Negative Breast Cancer: WORLD SCIENTIFIC; 2020. p. 199-218.
11. Gilkes DM, Semenza GL. Role of hypoxia-inducible factors in breast cancer metastasis. Future Oncol. 2013;9(11):1623-1636.
12. Desai N, Sahel D, Kubal B, Postwala H, Shah Y, Chavda VP, et al. Role of the Extracellular Matrix in Cancer: Insights into Tumor Progression and Therapy. Advanced Therapeutics. 2025;8(2).
13. Ocana A, Pandiella A. Targeting oncogenic vulnerabilities in triple negative breast cancer: biological bases and ongoing clinical studies. Oncotarget. 2017;8(13):22218-22234.
14. Brianese RC, Nakamura KDdM, Almeida FGdSR, Ramalho RF, Barros BDdF, Ferreira ENe, et al. BRCA1 deficiency is a recurrent event in early-onset triple-negative breast cancer: a comprehensive analysis of germline mutations and somatic promoter methylation. Breast Cancer Res Treat. 2017;167(3):803-814.
15. Toh M, Ngeow J. Homologous Recombination Deficiency: Cancer Predispositions and Treatment Implications. The oncologist. 2021;26(9):e1526-e1537.
16. Aoki M, Fujishita T. Oncogenic Roles of the PI3K/AKT/mTOR Axis. Current Topics in Microbiology and Immunology: Springer International Publishing; 2017. p. 153-189.
17. Ward C, Langdon SP, Mullen P, Harris AL, Harrison DJ, Supuran CT, et al. New strategies for targeting the hypoxic tumour microenvironment in breast cancer. Cancer Treat Rev. 2013;39(2):171-179.
18. Sun W, Ren Y, Lu Z, Zhao X. The potential roles of exosomes in pancreatic cancer initiation and metastasis. Mol Cancer. 2020;19(1):135-135.
19. Sazeides C, Le A. Metabolic Relationship Between Cancer-Associated Fibroblasts and Cancer Cells. Advances in experimental medicine and biology. 2021;1311:189-204.
20. Gonçalves M, Rodrigues-Santos P, Januário C, Cosentino M, Pereira FC. Indoleamine 2,3-dioxygenase (IDO1) – Can dendritic cells and monocytes expressing this moonlight enzyme change the phase of Parkinson’s Disease? Int Immunopharmacol. 2024;133:112062.
21. Yi M, Li T, Niu M, Wu Y, Zhao Z, Wu K. TGF-β: A novel predictor and target for anti-PD-1/PD-L1 therapy. Front Immunol. 2022;13:1061394-1061394.
22. Fiori ME, Di Franco S, Villanova L, Bianca P, Stassi G, De Maria R. Cancer-associated fibroblasts as abettors of tumor progression at the crossroads of EMT and therapy resistance. Mol Cancer. 2019;18(1):70-70.
23. Li W-H, Wang F, Song G-Y, Yu Q-H, Du R-P, Xu P. PARP-1: a critical regulator in radioprotection and radiotherapy-mechanisms, challenges, and therapeutic opportunities. Front Pharmacol. 2023;14:1198948-1198948.
24. Langelier MF, Pascal JM. Structure of Human PARP-1 bound to a DNA double strand break. Worldwide Protein Data Bank; 2012.
25. Talens F, Jalving M, Gietema JA, Van Vugt MA. Therapeutic targeting and patient selection for cancers with homologous recombination defects. Expert Opinion on Drug Discovery. 2017;12(6):565-581.
26. Incorvaia L, Bazan Russo TD, Gristina V, Perez A, Brando C, Mujacic C, et al. The intersection of homologous recombination (HR) and mismatch repair (MMR) pathways in DNA repair-defective tumors. NPJ precision oncology. 2024;8(1):190-190.
27. McCrea C, Hettle R, Gulati P, Taneja A, Rajora P. Indirect treatment comparison of olaparib and talazoparib in germline BRCA-mutated HER2-negative metastatic breast cancer. Journal of Comparative Effectiveness Research. 2021;10(13):1021-1030.
28. El-Saber Batiha G, Alqahtani A, Ilesanmi OB, Saati AA, El-Mleeh A, Hetta HF, et al. Avermectin Derivatives, Pharmacokinetics, Therapeutic and Toxic Dosages, Mechanism of Action, and Their Biological Effects. Pharmaceuticals (Basel). 2020;13(8):196.
29. Nunes M, Bartosch C, Abreu MH, Richardson A, Almeida R, Ricardo S. Deciphering the Molecular Mechanisms behind Drug Resistance in Ovarian Cancer to Unlock Efficient Treatment Options. Cells. 2024;13(9):786.
30. Castroviejo-Bermejo M, Cruz C, Guerra S, Llop-Guevara A, Gutiérrez-Enríquez S, Bruna A, et al. Lack of RAD51 foci formation enables the identification of PARP inhibitor sensitive breast tumors. Eur J Cancer. 2016;69:S122-S123.
31. Da Silva CG, Peters GJ, Ossendorp F, Cruz LJ. The potential of multi-compound nanoparticles to bypass drug resistance in cancer. Cancer Chemother Pharmacol. 2017;80(5):881-894.
32. Bajwa DE, Salvanou E-A, Theodosiou M, Koutsikou TS, Efthimiadou EK, Bouziotis P, et al. Radiolabeled iron oxide nanoparticles functionalized with PSMA/BN ligands for dual-targeting of prostate cancer. Frontiers in nuclear medicine. 2023;3:1184309-1184309.
33. Hernández-Hernández AA, Aguirre-Álvarez G, Cariño-Cortés R, Mendoza-Huizar LH, Jiménez-Alvarado R. Iron oxide nanoparticles: synthesis, functionalization, and applications in diagnosis and treatment of cancer. Chemical Papers. 2020;74(11):3809-3824.
34. Terra JCS, Martins AR, Moura FCC, Weber CC, Moores A. Making more with less: confinement effects for more sustainable chemical transformations. Green Chem. 2022;24(4):1404-1438.
35. Dual-Targeted Multifunctional Nanoparticles for Magnetic Resonance Imaging Guided Cancer Diagnosis and Therapy. American Chemical Society (ACS).
36. Jha A, Rama A, Ladani B, Verma N, Kannan S, Naha A. Temperature and pH-responsive nanogels as intelligent drug delivery systems: A comprehensive review. Journal of Applied Pharmaceutical Science. 2021.
37. Freis B, Cotin G, Perton F, Mertz D, Boutry S, Laurent S, et al. The Size, Shape, and Composition Design of Iron Oxide Nanoparticles to Combine, MRI, Magnetic Hyperthermia, and Photothermia. Magnetic Nanoparticles in Human Health and Medicine: Wiley; 2021. p. 380-429.
38. Rahman M. Magnetic Resonance Imaging and Iron-oxide Nanoparticles in the era of Personalized Medicine. Nanotheranostics. 2023;7(4):424-449.
39. Anani T, Rahmati S, Sultana N, David AE. MRI-traceable theranostic nanoparticles for targeted cancer treatment. Theranostics. 2021;11(2):579-601.
40. Evodiamine-Based Nitroreductase Responsive Theranostic Agents for Treatment of Colon Cancer. American Chemical Society (ACS).
41. Louie A. Multimodality imaging probes: design and challenges. Chem Rev. 2010;110(5):3146-3195.
42. Govindan B, Sabri MA, Hai A, Banat F, Haija MA. A Review of Advanced Multifunctional Magnetic Nanostructures for Cancer Diagnosis and Therapy Integrated into an Artificial Intelligence Approach. Pharmaceutics. 2023;15(3):868.
43. Di Lorenzo G, Ricci G, Severini GM, Romano F, Biffi S. Imaging and therapy of ovarian cancer: clinical application of nanoparticles and future perspectives. Theranostics. 2018;8(16):4279-4294.
44. Ezealigo BN, Ezealigo US, Ighodalo KI, Ezema FI. Iron oxide nanoparticles: current and future applications in nanomedicine. Fundamentals and Industrial Applications of Magnetic Nanoparticles: Elsevier; 2022. p. 349-392.
45. Chaurasiya S, Mishra V. Biodegradable nanoparticles as theranostics of ovarian cancer: an overview. Journal of Pharmacy and Pharmacology. 2018;70(4):435-449.
46. Tarafdar A, Kaur BP. Storage stability of microfluidized sugarcane juice and associated kinetics. J Food Process Preserv. 2022;46(6).
47. Mishra R, Bassi P, Roobal, Shivani. Drug targeting to cancer cells through stimuli-responsive imine bonds: fascinating aspects of site specificity. Polymer-Drug Conjugates: Elsevier; 2023. p. 207-224.
48. Nguyen A, Böttger R, Li S-D. Recent trends in bioresponsive linker technologies of Prodrug-Based Self-Assembling nanomaterials. Biomaterials. 2021;275:120955.
49. El Guerrab A, Bamdad M, Kwiatkowski F, Bignon Y-J, Penault-Llorca F, Aubel C. Anti-EGFR monoclonal antibodies and EGFR tyrosine kinase inhibitors as combination therapy for triple-negative breast cancer. Oncotarget. 2016;7(45):73618-73637.
50. Zhuo Y, Zhao Y-G, Zhang Y. Enhancing Drug Solubility, Bioavailability, and Targeted Therapeutic Applications through Magnetic Nanoparticles. Molecules (Basel, Switzerland). 2024;29(20):4854.
51. Gadag S, Sinha S, Nayak Y, Garg S, Nayak UY. Combination Therapy and Nanoparticulate Systems: Smart Approaches for the Effective Treatment of Breast Cancer. Pharmaceutics. 2020;12(6):524.
52. Verma N. Precision epigenetic targeted combination therapies for Triple Negative Breast Cancer Subtypes. 2nd International E-Conference on Cancer Science and Therapy: United Research Forum; 2021.
53. Egea-Benavente D, Ovejero JG, Morales MDP, Barber DF. Understanding MNPs Behaviour in Response to AMF in Biological Milieus and the Effects at the Cellular Level: Implications for a Rational Design That Drives Magnetic Hyperthermia Therapy toward Clinical Implementation. Cancers (Basel). 2021;13(18):4583.
54. Wei F, Liu H, Wang Y, Li Y, Han S. Engineering macrophages and their derivatives: A new hope for antitumor therapy. Biomedicine and Pharmacotherapy. 2024;177:116925.
55. Imodoye SO, Adedokun KA, Bello IO. From complexity to clarity: unravelling tumor heterogeneity through the lens of tumor microenvironment for innovative cancer therapy. Histochem Cell Biol. 2024;161(4):299-323.
56. Baldwin PE. Development of molecular inhibitor nanoformulations for cancer therapy: Northeastern University Library.
57. Chappell K, Manna K, Washam CL, Graw S, Alkam D, Thompson MD, et al. Multi-omics data integration reveals correlated regulatory features of triple negative breast cancer. Molecular omics. 2021;17(5):677-691.
58. Muhammad FA, Altalbawy FMA, Mandaliya V, Saraswat SK, Rekha MM, Aulakh D, et al. Targeting breast tumor extracellular matrix and stroma utilizing nanoparticles. Clinical and Translational Oncology. 2024.
59. Khosravi G-R, Mostafavi S, Bastan S, Ebrahimi N, Gharibvand RS, Eskandari N. Immunologic tumor microenvironment modulators for turning cold tumors hot. Cancer communications (London, England). 2024;44(5):521-553.
60. Li H, Luo Q, Zhang H, Ma X, Gu Z, Gong Q, et al. Nanomedicine embraces cancer radio-immunotherapy: mechanism, design, recent advances, and clinical translation. Chemical Society Reviews. 2023;52(1):47-96.
61. Luther DC, Lee YW, Nagaraj H, Scaletti F, Rotello VM. Delivery approaches for CRISPR/Cas9 therapeutics in vivo: advances and challenges. Expert opinion on drug delivery. 2018;15(9):905-913.
62. Uz M, Alsoy Altinkaya S, Mallapragada SK. Stimuli responsive polymer-based strategies for polynucleotide delivery. Journal of Materials Research. 2017;32(15):2930-2953.
63. An Y, Talwar CS, Park K-H, Ahn W-C, Lee S-J, Go S-R, et al. Design of hypoxia responsive CRISPR-Cas9 for target gene regulation. Sci Rep. 2023;13(1):16763-16763.
64. Jain KK. Personalized Management of Cancers of Various Organs/Systems. Textbook of Personalized Medicine: Springer International Publishing; 2020. p. 509-602.
65. Gharavi AT, Irian S, Niknejad A, Parang K, Salimi M. Harnessing exosomes as a platform for drug delivery in breast cancer: A systematic review for in vivo and in vitro studies. Molecular therapy Oncology. 2024;32(2):200800-200800.
66. Lorenc T, Chrzanowski J, Olejarz W. Current Perspectives on Clinical Use of Exosomes as a Personalized Contrast Media and Theranostics. Cancers (Basel). 2020;12(11):3386.
67. Wang Y-XJ, Hussain SM, Krestin GP. Superparamagnetic iron oxide contrast agents: physicochemical characteristics and applications in MR imaging. Eur Radiol. 2001;11(11):2319-2331.
68. de Maar JS, Sofias AM, Porta Siegel T, Vreeken RJ, Moonen C, Bos C, et al. Spatial heterogeneity of nanomedicine investigated by multiscale imaging of the drug, the nanoparticle and the tumour environment. Theranostics. 2020;10(4):1884-1909.
69. Lu C, Han L, Wang J, Wan J, Song G, Rao J. Engineering of magnetic nanoparticles as magnetic particle imaging tracers. Chemical Society Reviews. 2021;50(14):8102-8146.
70. Dynamic Contrast-Enhanced Magnetic Resonance Imaging. Definitions: Qeios; 2020.
71. Reguera-Nuñez E, Xu P, Chow A, Man S, Hilberg F, Kerbel RS. Therapeutic impact of Nintedanib with paclitaxel and/or a PD-L1 antibody in preclinical models of orthotopic primary or metastatic triple negative breast cancer. Journal of experimental and clinical cancer research : CR. 2019;38(1):16-16.
72. Zhang D, Zhang J, Bian X, Zhang P, Wu W, Zuo X. Iron Oxide Nanoparticle-Based T(1) Contrast Agents for Magnetic Resonance Imaging: A Review. Nanomaterials (Basel, Switzerland). 2024;15(1):33.
73. Hypoxia-Responsive Aggregation of Iron Oxide Nanoparticles for T1toT2 Switchable Magnetic Resonance Imaging of Tumors. American Chemical Society (ACS).
74. Nikolova MP, Kumar EM, Chavali MS. Updates on Responsive Drug Delivery Based on Liposome Vehicles for Cancer Treatment. Pharmaceutics. 2022;14(10):2195.
75. Wang J, Zhao Y, Nie G. Intelligent nanomaterials for cancer therapy: recent progresses and future possibilities. Medical review (2021). 2023;3(4):321-342.
76. Basingab FS, Alshahrani OA, Alansari IH, Almarghalani NA, Alshelali NH, Alsaiary AH, et al. From Pioneering Discoveries to Innovative Therapies: A Journey Through the History and Advancements of Nanoparticles in Breast Cancer Treatment. Breast cancer (Dove Medical Press). 2025;17:27-51.
77. Kurniawan KW, Utomo SA, Wahyuhadi J. Diffusion Weighted Imaging (DWI) Classification and Apparent Diffusion Coefficient (ADC) Value Tendency Based on Cerebral Glioma Grading in Patients at Dr. Soetomo General Academic Hospital in 2016-2020. AKSONA. 2023;3(1):7-12.
78. Gao J, Lan J, Liao H, Yang F, Qiu P, Jin F, et al. Promising preclinical patient-derived organoid (PDO) and xenograft (PDX) models in upper gastrointestinal cancers: progress and challenges. BMC Cancer. 2023;23(1):1205-1205.
79. Klein H-M. Clinical Low Field Strength Magnetic Resonance Imaging. Springer International Publishing; 2016.
80. Schettini F, Corona SP, Giudici F, Strina C, Sirico M, Bernocchi O, et al. Clinical, Radiometabolic and Immunologic Effects of Olaparib in Locally Advanced Triple Negative Breast Cancer: The OLTRE Window of Opportunity Trial. Front Oncol. 2021;11:686776-686776.
Comments (0)