Li M, Peng D, Cao H, Yang X, Li S, Qiu H-J, et al. The host cytoskeleton functions as a pleiotropic scaffold: Orchestrating regulation of the viral life cycle and mediating host antiviral innate immune responses. Viruses. 2023;15:1354. https://doi.org/10.3390/v15061354.
Article CAS PubMed PubMed Central Google Scholar
Khairat JE, Hatta MNA, Abdullah N, Azman AS, Calvin SYM, Syed Hassan S. Unearthing the role of septins in viral infections. Biosci Rep 2024:44(3):BSR20231827. 10.1042/BSR20231827
Schwarz N, Leube RE. Plasticity of cytoplasmic intermediate filament architecture determines cellular functions. Curr Opin Cell Biol. 2023;85:102270. https://doi.org/10.1016/j.ceb.2023.102270.
Article CAS PubMed Google Scholar
Sobo JM, Alagna NS, Sun SX, Wilson KL, Reddy KL. Lamins: The backbone of the nucleocytoskeleton interface. Curr Opin Cell Biol. 2024;86:102313. https://doi.org/10.1016/j.ceb.2023.102313.
Article CAS PubMed Google Scholar
Ulferts S, Lopes M, Miyamoto K, Grosse R. Nuclear actin dynamics and functions at a glance. J Cell Sci. 2024;137(6):jcs261630. https://doi.org/10.1242/jcs.261630.
Article CAS PubMed Google Scholar
da Silva ES, Naghavi MH. Microtubules and viral infection. Adv Virus Res. 2023;115:87–134. https://doi.org/10.1016/bs.aivir.2023.02.003.
Article CAS PubMed Google Scholar
De Conto F. Avian influenza a viruses modulate the cellular cytoskeleton during infection of mammalian hosts. Pathogens. 2024;13:249. https://doi.org/10.3390/pathogens13030249.
Article CAS PubMed PubMed Central Google Scholar
Hartland EL, Ghosal D, Giogha C. Manipulation of epithelial cell architecture by the bacterial pathogens Listeria and Shigella. Curr Opin Cell Biol. 2022;79:102131. https://doi.org/10.1016/j.ceb.2022.102131.
Article CAS PubMed Google Scholar
Jiang S, Yang H, Sun Z, Zhang Y, Li Y, Li J. The basis of complications in the context of SARS-CoV-2 infection: Pathological activation of ADAM17. Biochem Biophys Res Commun. 2023;679:37–46. https://doi.org/10.1016/j.bbrc.2023.08.063.
Article CAS PubMed Google Scholar
Mei J, Huang X, Fan C, Fang J, Jiu Y. Cytoskeleton network participates in the anti-infection responses of macrophage. BioEssays. 2023;45(8):e2200225. https://doi.org/10.1002/bies.202200225.
Article CAS PubMed Google Scholar
Zhao S, Miao C, Gao X, Li Z, Eriksson JE, Jiu Y. Vimentin cage – A double-edged sword in host anti-infection defense. Curr Opin Cell Biol. 2024;86:102317. https://doi.org/10.1016/j.ceb.2023.102317.
Article CAS PubMed Google Scholar
Acharya D, Reis R, Volcic M, Liu G, Wang MK, Chia BS, et al. Actin cytoskeleton remodeling primes RIG-I-like receptor activation. Cell. 2022;185:3588-3602.e21. https://doi.org/10.1016/j.cell.2022.08.011.
Article CAS PubMed PubMed Central Google Scholar
Hertel L. Herpesviruses and intermediate filaments: Close encounters with the third type. Viruses. 2011;3:1015–40. https://doi.org/10.3390/v3071015.
Article CAS PubMed PubMed Central Google Scholar
Chang K, Majmudar H, Tandon R, Volin MV, Tiwari V. Induction of filopodia during cytomegalovirus entry into human iris stromal cells. Front Microbiol. 2022;13:834927. https://doi.org/10.3389/fmicb.2022.834927.
Article PubMed PubMed Central Google Scholar
Barrero-Villar M, Cabrero JR, Gordón-Alonso M, Barroso-González J, Álvarez-Losada S, Muñoz-Fernández MA, et al. Moesin is required for HIV-1-induced CD4-CXCR4 interaction, F-actin redistribution, membrane fusion and viral infection in lymphocytes. J Cell Sci. 2009;122:103–13. https://doi.org/10.1242/jcs.035873.
Article CAS PubMed Google Scholar
Bearer E, Satpute-Krishnan P. The role of the cytoskeleton in the life cycle of viruses and intracellular bacteria: Tracks, motors, and polymerization machines. Curr Drug Target-Infect Disord. 2002;2:247–64. https://doi.org/10.2174/1568005023342407.
Radtke K, Dohner K, Sodeik B. Viral interactions with the cytoskeleton: a hitchhiker’s guide to the cell. Cell Microbiol. 2006;8:387–400. https://doi.org/10.1111/j.1462-5822.2005.00679.x.
Article CAS PubMed Google Scholar
Diefenbach RJ, Davis A, Miranda-Saksena M, Fernandez MA, Kelly BJ, Jones CA, et al. The basic domain of herpes simplex virus 1 pUS9 recruits kinesin-1 To facilitate egress from neurons. J Virol. 2016;90:2102–11. https://doi.org/10.1128/JVI.03041-15.
Article CAS PubMed PubMed Central Google Scholar
Carpentier DCJ, Gao WND, Ewles H, Morgan GW, Smith GL. Vaccinia virus protein complex F12/E2 interacts with kinesin light chain isoform 2 to engage the kinesin-1 motor complex. PLoS Pathog. 2015;11:e1004723. https://doi.org/10.1371/journal.ppat.1004723.
Article CAS PubMed PubMed Central Google Scholar
Río-Bergé C, Cong Y, Reggiori F. Getting on the right track: Interactions between viruses and the cytoskeletal motor proteins. Traffic. 2023;24:114–30. https://doi.org/10.1111/tra.12835.
Article CAS PubMed Google Scholar
Toivola DM, Tao G-Z, Habtezion A, Liao J, Omary MB. Cellular integrity plus: organelle-related and protein-targeting functions of intermediate filaments. Trends Cell Biol. 2005;15:608–17. https://doi.org/10.1016/j.tcb.2005.09.004.
Article CAS PubMed Google Scholar
Sripada S, Dayaraj C. Viral interactions with intermediate filaments: Paths less explored. Cell Health Cytoskeleton. 2010;2:1–7. https://doi.org/10.2147/CHC.S8782.
Sharafutdinov I, Friedrich B, Rottner K, Backert S, Tegtmeyer N. Cortactin: A major cellular target of viral, protozoal, and fungal pathogens. Mol Microbiol. 2024;122:165–83. https://doi.org/10.1111/mmi.15284.
Article CAS PubMed Google Scholar
Cui C, Hao P, Jin C, Xu W, Liu Y, Li L, et al. Interaction of Nipah virus F and G with the cellular protein Cortactin discovered by a proximity interactome assay. Int J Mol Sci. 2024;25:4112. https://doi.org/10.3390/ijms25074112.
Article CAS PubMed PubMed Central Google Scholar
Hunziker A, Glas I, Pohl MO, Stertz S. Phosphoproteomic profiling of influenza virus entry reveals infection-triggered filopodia induction counteracted by dynamic cortactin phosphorylation. Cell Rep. 2022;38:110306. https://doi.org/10.1016/j.celrep.2022.110306.
Article CAS PubMed Google Scholar
Kubisiak A, Dabrowska A, Botwina P, Twardawa P, Kloska D, Kołodziej T, et al. Remodeling of intracellular architecture during SARS-CoV-2 infection of human endothelium. Sci Rep. 2024;14:29784. https://doi.org/10.1038/s41598-024-80351-z.
Article CAS PubMed PubMed Central Google Scholar
Zhang Y, Zhang X, Li Z, Zhao W, Yang H, Zhao S, et al. Single particle tracking reveals SARS-CoV-2 regulating and utilizing dynamic filopodia for viral invasion. Sci Bull (Beijing). 2023;68:2210–24. https://doi.org/10.1016/j.scib.2023.08.031.
Article CAS PubMed Google Scholar
Wu C-T, Lidsky PV, Xiao Y, Cheng R, Lee IT, Nakayama T, et al. SARS-CoV-2 replication in airway epithelia requires motile cilia and microvillar reprogramming. Cell. 2023;186:112-130.e20. https://doi.org/10.1016/j.cell.2022.11.030.
Comments (0)