Highly Dynamic Cytoskeletal Networks Support Productive Viral Infection and Host Innate Immune Response Activation

Li M, Peng D, Cao H, Yang X, Li S, Qiu H-J, et al. The host cytoskeleton functions as a pleiotropic scaffold: Orchestrating regulation of the viral life cycle and mediating host antiviral innate immune responses. Viruses. 2023;15:1354. https://doi.org/10.3390/v15061354.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Khairat JE, Hatta MNA, Abdullah N, Azman AS, Calvin SYM, Syed Hassan S. Unearthing the role of septins in viral infections. Biosci Rep 2024:44(3):BSR20231827. 10.1042/BSR20231827

Schwarz N, Leube RE. Plasticity of cytoplasmic intermediate filament architecture determines cellular functions. Curr Opin Cell Biol. 2023;85:102270. https://doi.org/10.1016/j.ceb.2023.102270.

Article  CAS  PubMed  Google Scholar 

Sobo JM, Alagna NS, Sun SX, Wilson KL, Reddy KL. Lamins: The backbone of the nucleocytoskeleton interface. Curr Opin Cell Biol. 2024;86:102313. https://doi.org/10.1016/j.ceb.2023.102313.

Article  CAS  PubMed  Google Scholar 

Ulferts S, Lopes M, Miyamoto K, Grosse R. Nuclear actin dynamics and functions at a glance. J Cell Sci. 2024;137(6):jcs261630. https://doi.org/10.1242/jcs.261630.

Article  CAS  PubMed  Google Scholar 

da Silva ES, Naghavi MH. Microtubules and viral infection. Adv Virus Res. 2023;115:87–134. https://doi.org/10.1016/bs.aivir.2023.02.003.

Article  CAS  PubMed  Google Scholar 

De Conto F. Avian influenza a viruses modulate the cellular cytoskeleton during infection of mammalian hosts. Pathogens. 2024;13:249. https://doi.org/10.3390/pathogens13030249.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hartland EL, Ghosal D, Giogha C. Manipulation of epithelial cell architecture by the bacterial pathogens Listeria and Shigella. Curr Opin Cell Biol. 2022;79:102131. https://doi.org/10.1016/j.ceb.2022.102131.

Article  CAS  PubMed  Google Scholar 

Jiang S, Yang H, Sun Z, Zhang Y, Li Y, Li J. The basis of complications in the context of SARS-CoV-2 infection: Pathological activation of ADAM17. Biochem Biophys Res Commun. 2023;679:37–46. https://doi.org/10.1016/j.bbrc.2023.08.063.

Article  CAS  PubMed  Google Scholar 

Mei J, Huang X, Fan C, Fang J, Jiu Y. Cytoskeleton network participates in the anti-infection responses of macrophage. BioEssays. 2023;45(8):e2200225. https://doi.org/10.1002/bies.202200225.

Article  CAS  PubMed  Google Scholar 

Zhao S, Miao C, Gao X, Li Z, Eriksson JE, Jiu Y. Vimentin cage – A double-edged sword in host anti-infection defense. Curr Opin Cell Biol. 2024;86:102317. https://doi.org/10.1016/j.ceb.2023.102317.

Article  CAS  PubMed  Google Scholar 

Acharya D, Reis R, Volcic M, Liu G, Wang MK, Chia BS, et al. Actin cytoskeleton remodeling primes RIG-I-like receptor activation. Cell. 2022;185:3588-3602.e21. https://doi.org/10.1016/j.cell.2022.08.011.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hertel L. Herpesviruses and intermediate filaments: Close encounters with the third type. Viruses. 2011;3:1015–40. https://doi.org/10.3390/v3071015.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chang K, Majmudar H, Tandon R, Volin MV, Tiwari V. Induction of filopodia during cytomegalovirus entry into human iris stromal cells. Front Microbiol. 2022;13:834927. https://doi.org/10.3389/fmicb.2022.834927.

Article  PubMed  PubMed Central  Google Scholar 

Barrero-Villar M, Cabrero JR, Gordón-Alonso M, Barroso-González J, Álvarez-Losada S, Muñoz-Fernández MA, et al. Moesin is required for HIV-1-induced CD4-CXCR4 interaction, F-actin redistribution, membrane fusion and viral infection in lymphocytes. J Cell Sci. 2009;122:103–13. https://doi.org/10.1242/jcs.035873.

Article  CAS  PubMed  Google Scholar 

Bearer E, Satpute-Krishnan P. The role of the cytoskeleton in the life cycle of viruses and intracellular bacteria: Tracks, motors, and polymerization machines. Curr Drug Target-Infect Disord. 2002;2:247–64. https://doi.org/10.2174/1568005023342407.

Article  CAS  Google Scholar 

Radtke K, Dohner K, Sodeik B. Viral interactions with the cytoskeleton: a hitchhiker’s guide to the cell. Cell Microbiol. 2006;8:387–400. https://doi.org/10.1111/j.1462-5822.2005.00679.x.

Article  CAS  PubMed  Google Scholar 

Diefenbach RJ, Davis A, Miranda-Saksena M, Fernandez MA, Kelly BJ, Jones CA, et al. The basic domain of herpes simplex virus 1 pUS9 recruits kinesin-1 To facilitate egress from neurons. J Virol. 2016;90:2102–11. https://doi.org/10.1128/JVI.03041-15.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Carpentier DCJ, Gao WND, Ewles H, Morgan GW, Smith GL. Vaccinia virus protein complex F12/E2 interacts with kinesin light chain isoform 2 to engage the kinesin-1 motor complex. PLoS Pathog. 2015;11:e1004723. https://doi.org/10.1371/journal.ppat.1004723.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Río-Bergé C, Cong Y, Reggiori F. Getting on the right track: Interactions between viruses and the cytoskeletal motor proteins. Traffic. 2023;24:114–30. https://doi.org/10.1111/tra.12835.

Article  CAS  PubMed  Google Scholar 

Toivola DM, Tao G-Z, Habtezion A, Liao J, Omary MB. Cellular integrity plus: organelle-related and protein-targeting functions of intermediate filaments. Trends Cell Biol. 2005;15:608–17. https://doi.org/10.1016/j.tcb.2005.09.004.

Article  CAS  PubMed  Google Scholar 

Sripada S, Dayaraj C. Viral interactions with intermediate filaments: Paths less explored. Cell Health Cytoskeleton. 2010;2:1–7. https://doi.org/10.2147/CHC.S8782.

Article  CAS  Google Scholar 

Sharafutdinov I, Friedrich B, Rottner K, Backert S, Tegtmeyer N. Cortactin: A major cellular target of viral, protozoal, and fungal pathogens. Mol Microbiol. 2024;122:165–83. https://doi.org/10.1111/mmi.15284.

Article  CAS  PubMed  Google Scholar 

Cui C, Hao P, Jin C, Xu W, Liu Y, Li L, et al. Interaction of Nipah virus F and G with the cellular protein Cortactin discovered by a proximity interactome assay. Int J Mol Sci. 2024;25:4112. https://doi.org/10.3390/ijms25074112.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hunziker A, Glas I, Pohl MO, Stertz S. Phosphoproteomic profiling of influenza virus entry reveals infection-triggered filopodia induction counteracted by dynamic cortactin phosphorylation. Cell Rep. 2022;38:110306. https://doi.org/10.1016/j.celrep.2022.110306.

Article  CAS  PubMed  Google Scholar 

Kubisiak A, Dabrowska A, Botwina P, Twardawa P, Kloska D, Kołodziej T, et al. Remodeling of intracellular architecture during SARS-CoV-2 infection of human endothelium. Sci Rep. 2024;14:29784. https://doi.org/10.1038/s41598-024-80351-z.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang Y, Zhang X, Li Z, Zhao W, Yang H, Zhao S, et al. Single particle tracking reveals SARS-CoV-2 regulating and utilizing dynamic filopodia for viral invasion. Sci Bull (Beijing). 2023;68:2210–24. https://doi.org/10.1016/j.scib.2023.08.031.

Article  CAS  PubMed  Google Scholar 

Wu C-T, Lidsky PV, Xiao Y, Cheng R, Lee IT, Nakayama T, et al. SARS-CoV-2 replication in airway epithelia requires motile cilia and microvillar reprogramming. Cell. 2023;186:112-130.e20. https://doi.org/10.1016/j.cell.2022.11.030.

Article  CAS  PubMed 

Comments (0)

No login
gif