The effect of biosynthesized zinc oxide nanoparticles on gene expression and apoptosis in triple-negative breast cancer cells

Freddie Bray M, Laversanne H, Sung J, Ferlay RL, Siegel I, Soerjomataram A, Jemal. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2024;74(3):229–63. https://doi.org/10.3322/caac.21834.

Article  PubMed  Google Scholar 

Rebecca L, Siegel, Angela N, Giaquinto A. Cancer statistics, 2024. CA Cancer J Clin. 2024;74:12–49. https://doi.org/10.3322/caac.21820.

Article  Google Scholar 

Paola Zagami and Lisa Anne Carey. Triple negative breast cancer: pitfalls and progress. npj Breast Cancer. 2022;8:95. https://doi.org/10.1038/s41523-022-00468-0.

Article  CAS  PubMed  Google Scholar 

Bianchini G, De Angelis C, Licata L, et al. Treatment landscape of triple-negative breast cancer — expanded options, evolving needs. Nat Rev Clin Oncol. 2022;19:91–113. https://doi.org/10.1038/s41571-021-00565-2.

Article  CAS  PubMed  Google Scholar 

Obidiro O, Battogtokh G, Akala EO. Triple negative breast Cancer Treatment options and limitations: Future Outlook. Pharmaceutics. 2023;15:1796. https://doi.org/10.3390/pharmaceutics15071796.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nirmala MJ, Kizhuveetil U, Johnson A, Balaji G. Ramamurthy Nagarajan and Vignesh Muthuvijayan. Cancer nanomedicine: a review of nanotherapeutics and challenges ahead. RSC Adv. 2023;13:8606. https://doi.org/10.1039/D2RA07863E.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Massimiliano Magro A, Venerando A, Macone G, Canettieri E, Agostinelli, Vianello F. Nanotechnology-Based Strategies to Develop New Anticancer Therapies. Biomolecules 2020, 10, 735; https://doi.org/10.3390/biom10050735

Zehra Edis J, Wang MK, Waqas M, Ijaz. Munazza Ijaz. Nanocarriers-mediated drug Delivery systems for Anticancer agents: an overview and perspectives. Int J Nanomed 2021:161313–133.

Liu L, Ye Q, Lu M, et al. A New Approach to reduce toxicities and to improve bioavailabilities of platinum-containing anti-cancer nanodrugs. Sci Rep. 2015;5:10881. https://doi.org/10.1038/srep10881.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sun L, Liu H, Ye Y, et al. Smart nanoparticles for cancer therapy. Sig Transduct Target Ther. 2023;8:418. https://doi.org/10.1038/s41392-023-01642-x.

Article  CAS  Google Scholar 

Shuaixuan Ying Z, Guan PC, Ofoegbu P, Clubb C, Rico F, He, Jie Hong. Green synthesis of nanoparticles: current developments and limitations. Environ Technol Innov. 2022;26:102336.

Article  Google Scholar 

Nandhini J, Karthikeyan E, Rajeshkumar S. Green Synthesis of Zinc Oxide Nanoparticles: eco-friendly advancements for Biomedical Marvels. Resour Chemicals Mater. 2024. https://doi.org/10.1016/j.recm.2024.05.001.

Article  Google Scholar 

Yarui Liu X, Zhu Q, Zhao X, Du YQ, Li N, Liao C, Xin, Wang. Synthesis of silver nanoparticles using living electroactive biofilm protected by polydopamine. iScience 24, 102933 August 20, 2021. https://doi.org/10.1016/j.isci.2021.102933

Zahra Keshtmand E, Khademian PP, Jafroodi MS, Abtahi, Mohammad Tavakkoli Yaraki. Green synthesis of selenium nanoparticles using Artemisia chamaemelifolia: toxicity effects through regulation of gene expression for cancer cells and bacteria. Nano-Structures Nano-Objects. 2023;36:101049.

Article  Google Scholar 

Chen J, Gan L, Han Y, Owens G, Chen Z. Ferrous sulfide nanoparticles can be biosynthesized by sulfate-reducing bacteria: synthesis, characterization and removal of heavy metals from acid mine drainage. J Hazard Mater Volume 466, 15 March 2024, 133622.

Wang D, Xue B, Wang L, et al. Fungus-mediated green synthesis of nano-silver using aspergillus sydowii and its antifungal/antiproliferative activities. Sci Rep. 2021;11:10356. https://doi.org/10.1038/s41598-021-89854-5.

Article  CAS  PubMed  PubMed Central  Google Scholar 

El-Khawaga AM, Elsayed MA, Gobara M, et al. Green synthesized ZnO nanoparticles by Saccharomyces cerevisiae and their antibacterial activity and photocatalytic degradation. Biomass Conv Bioref. 2023. https://doi.org/10.1007/s13399-023-04827-0.

Article  Google Scholar 

Tatsuo Maruyama Y, Fujimoto T, Maekawa. June. Synthesis of gold nanoparticles using various amino acids. Journal of Colloid and Interface Science Volume 447, 1 2015, Pages 254–257.

Das AK, Fanan A, Ali D, Solanki VS, Pare B, Almutairi BO, Agrawal N, Yadav N, Pareek V, Yadav VK. Green synthesis of unsaturated fatty acid mediated Magnetite nanoparticles and their structural and magnetic studies. Magnetochemistry. 2022;8:174. https://doi.org/10.3390/magnetochemistry8120174.

Article  CAS  Google Scholar 

Seifi N, Mansoori R, Khoshbakht Marvi P, Niknam S, Zarrinnahad H, Amini N, Dehdast CF, Shabani SA. M. Anti-cancerous effect and biological evaluation of green synthesized Selenium nanoparticles on MCF-7 breast cancer and HUVEC cell lines. Nanomed Res J, 2023; 8(4): 373–382. https://doi.org/10.22034/nmrj.2023.04.006

Giri AK, Jena B, Biswal B, et al. Green synthesis and characterization of silver nanoparticles using Eugenia Roxburghii DC. Extract and activity against biofilm-producing bacteria. Sci Rep. 2022;12:8383. https://doi.org/10.1038/s41598-022-12484-y.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shiza Malik M, Niazi M, Khan B, Rauff S, Anwar. Faheem Amin, and Rumeza Hanif. Cytotoxicity study of gold nanoparticle synthesis using Aloe vera, Honey, and Gymnema sylvestre Leaf Extract. ACS Omega. 2023;8:6325–36.

Article  PubMed  PubMed Central  Google Scholar 

Ashour MA, Abd-Elhalim BT. Biosynthesis and biocompatibility evaluation of zinc oxide nanoparticles prepared using Priestia megaterium bacteria. Sci Rep. 2024;14:4147. https://doi.org/10.1038/s41598-024-54460-8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Subhan MA, Neogi N, Choudhury KP. Industrial Manufacturing Applications of Zinc Oxide Nanomaterials: A Comprehensive Study. Nanomanufacturing 2022, 2, 265–291. https://doi.org/10.3390/nanomanufacturing2040016

Taglieri G, Daniele V, Maurizio V, Merlin G, Siligardi C, Capron M, Mondelli C. New Eco-friendly and low-energy synthesis to produce ZnO nanoparticles for real-world scale applications. Nanomaterials. 2023;13:2458. https://doi.org/10.3390/nano13172458.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chekroun MZ, Benali MA, Yahiaoui IE, Debab M, Belmehdi MZ, Tabet-Derraz H. Optical properties behavior of ZnO nanoparticles deposited on glass in the ultraviolet–visible spectral range: experimental and numerical study. Opt Mater Volume. October 2022;132:112769.

Elbrolesy A, Abdou Y, Elhussiny FA, et al. Novel green synthesis of UV-Sunscreen ZnO nanoparticles using Solanum Lycopersicum Fruit Extract and evaluation of their antibacterial and anticancer activity. J Inorg Organomet Polym. 2023;33:3750–9. https://doi.org/10.1007/s10904-023-02744-3.

Article  CAS  Google Scholar 

Bindu Sadanandan PM, Krishna b M, Kumari V, Vijayalakshmi BM, Nagabhushana S, Vangala HK, Singh BR. Divya Swaroopa, V. Megala. Zinc oxide nanoparticles exhibit anti-cancer activity against human cell lines. Journal of Molecular Structure Volume 1305, 5 June 2024, 137723.

Fakhar-e-Alam M, Amjad I, Saadullah M, Tahir M, Jawad M, Asif M, Atif M. Susi Zara, Muhammad Rashad. Antitumor activity of zinc oxide nanoparticles fused with green extract of Nigella sativa. J Saudi Chem Soc. 2024;28:101814.

Article  CAS  Google Scholar 

Caron AJ, Ali IJ, Delgado MJ, Johnson D, Reeks JM, Strzhemechny YM, McGillivray SM. Zinc oxide nanoparticles mediate bacterial toxicity in Mueller-Hinton Broth via Zn2+. Front Microbiol. 2024;15:1394078. https://doi.org/10.3389/fmicb.2024.1394078.

Article  PubMed  PubMed Central  Google Scholar 

Kahil H, Gad MS, Ebraheem H. The efficacy of ZnO-NPs prepared via green route against colon and breast cancer cells. Discov Appl Sci. 2024;6:109. https://doi.org/10.1007/s42452-024-05659-x.

Article  Google Scholar 

Hameed H, Waheed A, Sharif MS, Saleem M, Afreen A, Tariq M, Kamal A, Al-onazi WA, Al Farraj DA, Ahmad S, et al. Green Synthesis of Zinc Oxide (ZnO) nanoparticles from Green Algae and their Assessment in various biological applications. Micromachines. 2023;14:928. https://doi.org/10.3390/mi14050928.

Article  PubMed  PubMed Central  Google Scholar 

Nguyen THP, Nguyen TP, Nguyen TAT, et al. Terminalia catappa leaf extract as a bio-reducing agent to synthesize Cu2O nanoparticles for methylene blue photodegradation. Discov Appl Sci. 2024;6:309. https://doi.org/10.1007/s42452-024-05990-3.

Article  CAS  Google Scholar 

Shahram, Eslami, Mohammad Ali Ebrahimzadeh and Pourya Biparva. Green synthesis of safe zero valent iron nanoparticles by Myrtus communis leaf extract as an effective agent for reducing excessive iron in iron-overloaded mice, a thalassemia model. RSC Adv. 2018;8:26144.

Article  Google Scholar 

Carlotta Pucci C, Martinelli DD, Pasquale M, Battaglini. Nicoletta Di Leo, Andrea Degl’Innocenti, Melike Belenli Gümüş, Filippo Drago, and Gianni Ciofani. Tannic acid–Iron complex-based nanoparticles as a Novel Tool against oxidative stress. ACS Appl Mater Interfaces. 2022;14:14, 15927–41.

Article  PubMed  PubMed Central  Google Scholar 

Khandel P, Yadaw RK, Soni DK, et al. Biogenesis of metal nanoparticles and their pharmacological applications: present status and application prospects. J Nanostruct Chem. 2018;8:217–54. https://doi.org/10.1007/s40097-018-0267-4.

Article  CAS  Google Scholar 

Elaheh Hosseinzadeh A, Foroumadi, Loghman Firoozpour. What is the role of phytochemical compounds as capping agents for the inhibition of aggregation in the green synthesis of metal oxide nanoparticles? A DFT molecular level response. Inorg Chem Commun Volume. January 2023;147:110243.

Kumar H, Bhardwaj K, Dhanjal DS, Nepovimova E, Fatih S, en, Regassa H, Singh R, Verma R, Kumar V, Kumar D. Shashi Kant Bhatia, and Kamil Kuˇca. Fruit Extract mediated Green synthesis of metallic nanoparticles: a New Avenue in Pomology Applications. Int J Mol Sci. 2020;21:8458. https://doi.org/10.3390/ijms21228458.

Article  CAS 

Comments (0)

No login
gif