Giri B, Dey S, Das T, Sarkar M, Banerjee J, Dash SK. Chronic hyperglycemia mediated physiological alteration and metabolic distortion leads to organ dysfunction, infection, cancer progression and other pathophysiological consequences: an update on glucose toxicity. Biomed Pharmacother. 2018;107:306–28. https://doi.org/10.1016/j.biopha.2018.07.157.
Article CAS PubMed Google Scholar
Banday MZ, Sameer AS, Nissar S. Pathophysiology of diabetes: an overview. Avicenna J Med. 2020;10(04):174–88. https://doi.org/10.4103/ajm.ajm_53_20.
Article PubMed PubMed Central Google Scholar
Driver VR, Lavery LA, Reyzelman AM, Dutra TG, Dove CR, Kotsis SV, Kim HM, Chung KC. A clinical trial of integra template for diabetic foot ulcer treatment. Wound Repair Regeneration. 2015;23(6):891–900. https://doi.org/10.1111/wrr.12357.
Rodrigues M, Kosaric N, Bonham CA, Gurtner GC. Wound healing: a cellular perspective. Physiol Rev. 2019;99(1):665–706. https://doi.org/10.1152/physrev.00067.2017.
Article CAS PubMed Google Scholar
Patel S, Srivastava S, Singh MR, Singh D. Mechanistic insight into diabetic wounds: pathogenesis, molecular targets and treatment strategies to Pace wound healing. Biomed Pharmacother. 2019;112:108615. https://doi.org/10.1016/j.biopha.2019.108615.
Article CAS PubMed Google Scholar
Monaghan MG, Borah R, Thomsen C, Browne S. Thou shall not heal: overcoming the non-healing behaviour of diabetic foot ulcers by engineering the inflammatory microenvironment. Adv Drug Delivery Reviews 2023 Oct 25:115120. https://doi.org/10.1016/j.addr.2023.115120
Yadav JP, Singh AK, Grishina M, Pathak P, Verma A, et al. Insights into the mechanisms of diabetic wounds: pathophysiology, molecular targets, and treatment strategies through conventional and alternative therapies. Inflammopharmacology. 2024;32(1):149–228. https://doi.org/10.1007/s10787-023-01407-6.
Article CAS PubMed Google Scholar
Bondar A, Popa AR, Papanas N, Popoviciu M, Vesa CM, Sabau M, Daina C, Stoica RA, Katsiki N, Stoian AP. Diabetic neuropathy: A narrative review of risk factors, classification, screening and current pathogenic treatment options. Experimental Therapeutic Med. 2021;22(1):1–9. https://doi.org/10.3892/etm.2021.10122.
Wilkinson HN, Hardman MJ. Wound healing: cellular mechanisms and pathological outcomes. Open Biology. 2020;10(9):200223. https://doi.org/10.1098/rsob.200223.
Article CAS PubMed PubMed Central Google Scholar
Lang X, Li L, Li Y, Feng X. Effect of diabetes on wound healing: A bibliometrics and visual analysis. J Multidisciplinary Healthc 2024 Dec 31:1275–89. https://doi.org/10.2147/JMDH.S457498
Falanga V. Wound healing and its impairment in the diabetic foot. Lancet. 2005;366(9498):1736–43. https://doi.org/10.1016/S0140-6736(05)67700-8.
Fernández-Guarino M, Hernández-Bule ML, Bacci S. Cellular and molecular processes in wound healing. Biomedicines. 2023;11(9):2526. https://doi.org/10.3390/biomedicines11092526.
Article CAS PubMed PubMed Central Google Scholar
Mamun AA, Shao C, Geng P, Wang S, Xiao J. Recent advances in molecular mechanisms of skin wound healing and its treatments. Front Immunol. 2024;15:1395479. https://doi.org/10.3389/fimmu.2024.1395479.
Article CAS PubMed PubMed Central Google Scholar
Jakubzick CV, Randolph GJ, Henson PM. Monocyte differentiation and antigen-presenting functions. Nat Rev Immunol. 2017;17(6):349–62. https://doi.org/10.1038/nri.2017.28.
Article CAS PubMed Google Scholar
Geindreau M, Ghiringhelli F, Bruchard M. Vascular endothelial growth factor, a key modulator of the anti-tumor immune response. Int J Mol Sci. 2021;22(9):4871. https://doi.org/10.3390/ijms22094871.
Article CAS PubMed PubMed Central Google Scholar
Tracy LE, Minasian RA, Caterson EJ. Extracellular matrix and dermal fibroblast function in the healing wound. Adv Wound Care. 2016;5(3):119–36. https://doi.org/10.1089/wound.2014.0561.
Decline F, Rousselle P. Keratinocyte migration requires Α2β1 integrin-mediated interaction with the laminin 5 Γ2 chain. J Cell Sci. 2001;114(4):811–23. https://doi.org/10.1242/jcs.114.4.811.
Article CAS PubMed Google Scholar
Martin P, Nunan R. Cellular and molecular mechanisms of repair in acute and chronic wound healing. Br J Dermatol. 2015;173(2):370–8. https://doi.org/10.1111/bjd.13954.
Article CAS PubMed PubMed Central Google Scholar
Diller RB, Tabor AJ. The role of the extracellular matrix (ECM) in wound healing: a review. Biomimetics. 2022;7(3):87. https://doi.org/10.3390/biomimetics7030087.
Article CAS PubMed PubMed Central Google Scholar
Cabral-Pacheco GA, Garza-Veloz I, Castruita-De la Rosa C, Ramirez-Acuña JM, Perez-Romero BA, Guerrero-Rodriguez JF, Martinez-Avila N, Martinez-Fierro ML. The roles of matrix metalloproteinases and their inhibitors in human diseases. Int J Mol Sci. 2020;21(24):9739. https://doi.org/10.3390/ijms21249739.
Article CAS PubMed PubMed Central Google Scholar
Zhang Y, Alexander PB, Wang XF. TGF-β family signaling in the control of cell proliferation and survival. Cold Spring Harb Perspect Biol. 2017;9(4):a022145. https://doi.org/10.1101/cshperspect.a022145.
Article CAS PubMed PubMed Central Google Scholar
Moustakas A, Pardali K, Gaal A, Heldin CH. Mechanisms of TGF-β signaling in regulation of cell growth and differentiation. Immunol Lett. 2002;82(1–2):85–91. https://doi.org/10.1016/S0165-2478(02)00023-8.
Article CAS PubMed Google Scholar
Batlle E, Massagué J. Transforming growth factor-β signaling in immunity and cancer. Immunity. 2019;50(4):924–. https://doi.org/10.1016/j.immuni.2019.03.024. 40.
Article CAS PubMed PubMed Central Google Scholar
Zhang W, Liu HT. MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell Res. 2002;12(1):9–18. https://doi.org/10.1038/sj.cr.7290105.
Article CAS PubMed Google Scholar
Zhou B, Lin W, Long Y, Yang Y, Zhang H, Wu K, Chu Q. Notch signaling pathway: architecture, disease, and therapeutics. Signal Transduct Target Therapy. 2022;7(1):95. https://doi.org/10.1038/s41392-022-00934-y.
Chakraborty R, Borah P, Dutta PP, Sen S. Evolving spectrum of diabetic wound: mechanistic insights and therapeutic targets. World J Diabetes. 2022;13(9):696. https://doi.org/10.4239/wjd.v13.i9.696.
Article PubMed PubMed Central Google Scholar
D’souza S, Addepalli V. Preventive measures in oral cancer: an overview. Biomed Pharmacother. 2018;107:72–80. https://doi.org/10.1016/j.biopha.2018.07.114.
Article CAS PubMed Google Scholar
Yue Q, Song Y, Liu Z, Zhang L, Yang L, Li J. Receptor for advanced glycation end products (RAGE): a pivotal hub in immune diseases. Molecules. 2022;27(15):4922. https://doi.org/10.3390/molecules27154922.
Article CAS PubMed PubMed Central Google Scholar
Liu T, Zhang L, Joo D, Sun SC. NF-κB signaling in inflammation. Signal Transduct Target Therapy. 2017;2(1):1–9. https://doi.org/10.1038/sigtrans.2017.23.
Fessel G, Li Y, Diederich V, Guizar-Sicairos M, Schneider P, Sell DR, Monnier VM, Snedeker JG. Advanced glycation end-products reduce collagen molecular sliding to affect collagen fibril damage mechanisms but not stiffness. PLoS ONE. 2014;9(1
Comments (0)