Understanding molecular mechanism of diabetic wound healing: addressing recent advancements in therapeutic managements

Giri B, Dey S, Das T, Sarkar M, Banerjee J, Dash SK. Chronic hyperglycemia mediated physiological alteration and metabolic distortion leads to organ dysfunction, infection, cancer progression and other pathophysiological consequences: an update on glucose toxicity. Biomed Pharmacother. 2018;107:306–28. https://doi.org/10.1016/j.biopha.2018.07.157.

Article  CAS  PubMed  Google Scholar 

Banday MZ, Sameer AS, Nissar S. Pathophysiology of diabetes: an overview. Avicenna J Med. 2020;10(04):174–88. https://doi.org/10.4103/ajm.ajm_53_20.

Article  PubMed  PubMed Central  Google Scholar 

Driver VR, Lavery LA, Reyzelman AM, Dutra TG, Dove CR, Kotsis SV, Kim HM, Chung KC. A clinical trial of integra template for diabetic foot ulcer treatment. Wound Repair Regeneration. 2015;23(6):891–900. https://doi.org/10.1111/wrr.12357.

Article  PubMed  Google Scholar 

Rodrigues M, Kosaric N, Bonham CA, Gurtner GC. Wound healing: a cellular perspective. Physiol Rev. 2019;99(1):665–706. https://doi.org/10.1152/physrev.00067.2017.

Article  CAS  PubMed  Google Scholar 

Patel S, Srivastava S, Singh MR, Singh D. Mechanistic insight into diabetic wounds: pathogenesis, molecular targets and treatment strategies to Pace wound healing. Biomed Pharmacother. 2019;112:108615. https://doi.org/10.1016/j.biopha.2019.108615.

Article  CAS  PubMed  Google Scholar 

Monaghan MG, Borah R, Thomsen C, Browne S. Thou shall not heal: overcoming the non-healing behaviour of diabetic foot ulcers by engineering the inflammatory microenvironment. Adv Drug Delivery Reviews 2023 Oct 25:115120. https://doi.org/10.1016/j.addr.2023.115120

Yadav JP, Singh AK, Grishina M, Pathak P, Verma A, et al. Insights into the mechanisms of diabetic wounds: pathophysiology, molecular targets, and treatment strategies through conventional and alternative therapies. Inflammopharmacology. 2024;32(1):149–228. https://doi.org/10.1007/s10787-023-01407-6.

Article  CAS  PubMed  Google Scholar 

Bondar A, Popa AR, Papanas N, Popoviciu M, Vesa CM, Sabau M, Daina C, Stoica RA, Katsiki N, Stoian AP. Diabetic neuropathy: A narrative review of risk factors, classification, screening and current pathogenic treatment options. Experimental Therapeutic Med. 2021;22(1):1–9. https://doi.org/10.3892/etm.2021.10122.

Article  CAS  Google Scholar 

Wilkinson HN, Hardman MJ. Wound healing: cellular mechanisms and pathological outcomes. Open Biology. 2020;10(9):200223. https://doi.org/10.1098/rsob.200223.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lang X, Li L, Li Y, Feng X. Effect of diabetes on wound healing: A bibliometrics and visual analysis. J Multidisciplinary Healthc 2024 Dec 31:1275–89. https://doi.org/10.2147/JMDH.S457498

Falanga V. Wound healing and its impairment in the diabetic foot. Lancet. 2005;366(9498):1736–43. https://doi.org/10.1016/S0140-6736(05)67700-8.

Article  PubMed  Google Scholar 

Fernández-Guarino M, Hernández-Bule ML, Bacci S. Cellular and molecular processes in wound healing. Biomedicines. 2023;11(9):2526. https://doi.org/10.3390/biomedicines11092526.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mamun AA, Shao C, Geng P, Wang S, Xiao J. Recent advances in molecular mechanisms of skin wound healing and its treatments. Front Immunol. 2024;15:1395479. https://doi.org/10.3389/fimmu.2024.1395479.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jakubzick CV, Randolph GJ, Henson PM. Monocyte differentiation and antigen-presenting functions. Nat Rev Immunol. 2017;17(6):349–62. https://doi.org/10.1038/nri.2017.28.

Article  CAS  PubMed  Google Scholar 

Geindreau M, Ghiringhelli F, Bruchard M. Vascular endothelial growth factor, a key modulator of the anti-tumor immune response. Int J Mol Sci. 2021;22(9):4871. https://doi.org/10.3390/ijms22094871.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tracy LE, Minasian RA, Caterson EJ. Extracellular matrix and dermal fibroblast function in the healing wound. Adv Wound Care. 2016;5(3):119–36. https://doi.org/10.1089/wound.2014.0561.

Article  Google Scholar 

Decline F, Rousselle P. Keratinocyte migration requires Α2β1 integrin-mediated interaction with the laminin 5 Γ2 chain. J Cell Sci. 2001;114(4):811–23. https://doi.org/10.1242/jcs.114.4.811.

Article  CAS  PubMed  Google Scholar 

Martin P, Nunan R. Cellular and molecular mechanisms of repair in acute and chronic wound healing. Br J Dermatol. 2015;173(2):370–8. https://doi.org/10.1111/bjd.13954.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Diller RB, Tabor AJ. The role of the extracellular matrix (ECM) in wound healing: a review. Biomimetics. 2022;7(3):87. https://doi.org/10.3390/biomimetics7030087.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cabral-Pacheco GA, Garza-Veloz I, Castruita-De la Rosa C, Ramirez-Acuña JM, Perez-Romero BA, Guerrero-Rodriguez JF, Martinez-Avila N, Martinez-Fierro ML. The roles of matrix metalloproteinases and their inhibitors in human diseases. Int J Mol Sci. 2020;21(24):9739. https://doi.org/10.3390/ijms21249739.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang Y, Alexander PB, Wang XF. TGF-β family signaling in the control of cell proliferation and survival. Cold Spring Harb Perspect Biol. 2017;9(4):a022145. https://doi.org/10.1101/cshperspect.a022145.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Moustakas A, Pardali K, Gaal A, Heldin CH. Mechanisms of TGF-β signaling in regulation of cell growth and differentiation. Immunol Lett. 2002;82(1–2):85–91. https://doi.org/10.1016/S0165-2478(02)00023-8.

Article  CAS  PubMed  Google Scholar 

Batlle E, Massagué J. Transforming growth factor-β signaling in immunity and cancer. Immunity. 2019;50(4):924–. https://doi.org/10.1016/j.immuni.2019.03.024.  40.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang W, Liu HT. MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell Res. 2002;12(1):9–18. https://doi.org/10.1038/sj.cr.7290105.

Article  CAS  PubMed  Google Scholar 

Zhou B, Lin W, Long Y, Yang Y, Zhang H, Wu K, Chu Q. Notch signaling pathway: architecture, disease, and therapeutics. Signal Transduct Target Therapy. 2022;7(1):95. https://doi.org/10.1038/s41392-022-00934-y.

Article  Google Scholar 

Chakraborty R, Borah P, Dutta PP, Sen S. Evolving spectrum of diabetic wound: mechanistic insights and therapeutic targets. World J Diabetes. 2022;13(9):696. https://doi.org/10.4239/wjd.v13.i9.696.

Article  PubMed  PubMed Central  Google Scholar 

D’souza S, Addepalli V. Preventive measures in oral cancer: an overview. Biomed Pharmacother. 2018;107:72–80. https://doi.org/10.1016/j.biopha.2018.07.114.

Article  CAS  PubMed  Google Scholar 

Yue Q, Song Y, Liu Z, Zhang L, Yang L, Li J. Receptor for advanced glycation end products (RAGE): a pivotal hub in immune diseases. Molecules. 2022;27(15):4922. https://doi.org/10.3390/molecules27154922.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu T, Zhang L, Joo D, Sun SC. NF-κB signaling in inflammation. Signal Transduct Target Therapy. 2017;2(1):1–9. https://doi.org/10.1038/sigtrans.2017.23.

Article  CAS  Google Scholar 

Fessel G, Li Y, Diederich V, Guizar-Sicairos M, Schneider P, Sell DR, Monnier VM, Snedeker JG. Advanced glycation end-products reduce collagen molecular sliding to affect collagen fibril damage mechanisms but not stiffness. PLoS ONE. 2014;9(1

Comments (0)

No login
gif