Assessment of gut microbiota in the elderly with sarcopenic obesity: a case-control study

Bilski, J., et al., Multifactorial mechanism of sarcopenia and sarcopenic obesity. Role of physical exercise, microbiota and myokines. Cells, 2022. 11(01): p. 160.

Cruz-Jentoft AJ, et al. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing. 2019;48(1):16–31.

Article  PubMed  Google Scholar 

Li Cw, et al. Pathogenesis of Sarcopenia and the relationship with fat mass: descriptive review. J cachexia Sarcopenia Muscle. 2022;13(2):781–94.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Alizadeh Pahlavani H. Exercise therapy for people with sarcopenic obesity: myokines and adipokines as effective actors. Front Endocrinol. 2022;13:811751.

Article  Google Scholar 

Grosicki, G.J., R.A. Fielding, and M.S. Lustgarten, Gut microbiota contribute to age-related changes in skeletal muscle size, composition, and function: biological basis for a gut-muscle axis. Calcified tissue international, 2018. 102: p. 433–442.

Wang, Z., et al., Bifidobacterium as a potential biomarker of sarcopenia in elderly women. Nutrients, 2023. 15(5): p. 1266.

Strasser B, et al. The effects of lifestyle and diet on gut microbiota composition, inflammation and muscle performance in our aging society. Nutrients. 2021;13(6):2045.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Spencer, S.P., G.K. Fragiadakis, and J.L. Sonnenburg, Pursuing human-relevant gut microbiota-immune interactions. Immunity, 2019. 51(2): p. 225–239.

Qi X, et al. The impact of the gut microbiota on the reproductive and metabolic endocrine system. Gut Microbes. 2021;13(1):1894070.

Article  PubMed  PubMed Central  Google Scholar 

Colombo AV, et al. Microbiota-derived short chain fatty acids modulate microglia and promote Aβ plaque deposition. Elife. 2021;10. e59826.

Busnelli, M., S. Manzini, and G. Chiesa, The gut microbiota affects host pathophysiology as an endocrine organ: A focus on cardiovascular disease. Nutrients, 2019. 12(1): p. 79.

He Y, et al. Metabolites of the gut microbiota may serve as precise diagnostic markers for Sarcopenia in the elderly. Front Microbiol. 2023;14:p1301805.

Article  Google Scholar 

Zheng, D., T. Liwinski, and E. Elinav, Interaction between microbiota and immunity in health and disease. Cell research, 2020. 30(6): p. 492–506.

Li, G., B. Jin, and Z. Fan, Mechanisms involved in gut microbiota regulation of skeletal muscle. Oxidative Medicine and Cellular Longevity, 2022. 2022(1): p. 2151191.

Oliphant, K. and E. Allen-Vercoe, Macronutrient metabolism by the human gut microbiome: major fermentation by-products and their impact on host health. Microbiome, 2019. 7: p. 1–15.

Wu J, et al. The role of the gut microbiome and its metabolites in metabolic diseases. Protein Cell. 2021;12(5):360–73.

Article  PubMed  Google Scholar 

Martin AM, et al. The influence of the gut microbiome on host metabolism through the regulation of gut hormone release. Front Physiol. 2019;10:428.

Article  PubMed  PubMed Central  Google Scholar 

Afzaal M, et al. Human gut microbiota in health and disease: unveiling the relationship. Front Microbiol. 2022;13:p999001.

Article  Google Scholar 

Jandhyala SM, et al. Role of the normal gut microbiota. World J Gastroenterology: WJG. 2015;21(29):8787.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Ryu JY, et al. Dysregulated autophagy mediates sarcopenic obesity and its complications via AMPK and PGC1α signaling pathways: potential involvement of gut dysbiosis as a pathological link. Int J Mol Sci. 2020;21(18):6887.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Ticinesi, A., et al., The gut-muscle axis in older subjects with low muscle mass and performance: a proof of concept study exploring fecal microbiota composition and function with shotgun metagenomics sequencing. International journal of molecular sciences, 2020. 21(23): p. 8946.

Schippa, S. and M.P. Conte, Dysbiotic events in gut microbiota: impact on human health. Nutrients, 2014. 6(12): p. 5786–5805.

Nikkhah A, et al. The critical role of gut microbiota dysbiosis in skeletal muscle wasting: a systematic review. J Appl Microbiol. 2023;134(1):lxac014.

Article  PubMed  Google Scholar 

Ticinesi, A., et al., Aging gut microbiota at the cross-road between nutrition, physical frailty, and sarcopenia: is there a gut–muscle axis? Nutrients, 2017. 9(12): p. 1303.

Xu Y, et al. Altered fecal microbiota composition in older adults with frailty. Front Cell Infect Microbiol. 2021;11:p696186.

Article  Google Scholar 

Moodi M, Firoozabadi MD, Kazemi T, Payab M, Ghaemi K, Miri MR, Sharifzadeh G, Fakhrzadeh H, Ebrahimpur M, Arzaghi SM, Zarban A, Mirimoghadam E, Sharifi A, Hosseini MS, Esmaeili A, Mohammadifard M, Ehsanbakhsh A, Ahmadi Z, Yaghoobi GH, Hosseinirad SA, Davari MH, Heydari B, Nikandish M, Norouzpour A, Naseri S, Khorashadizadeh M, Mohtashami S, Mehdizadeh K, Ahmadi G, Soltani H, Khodbakhshi H, Sharifi F, Larijan B. Birjand longitudinal aging study (BLAS): the objectives, study protocol, and design (wave I: baseline data gathering). J Diabetes Metab Disord. 2020;19(1):551–559. doi: 10.1007/s40200-020-00504-5. PMID: 32550207; PMCID: PMC7271344.

Bartosch S, Fite A, Macfarlane GT, McMurdo ME. Characterization of bacterial communities in feces from healthy elderly volunteers and hospitalized elderly patients by using real-time PCR and effects of antibiotic treatment on the fecal microbiota. Appl Environ Microbiol. 2004;70(6):3575-81.

Schneeberger M, Everard A, Gomez-Valades AG, Matamoros S, Ramirez 27. S, Delzenne NM, et al. Akkermansia muciniphila inversely correlates with the onset of inflammation, altered adipose tissue metabolism and metabolic disorders during obesity in mice. Sci Rep. 2015;5:16643.

Taylor J. Marcell, ReviewArticle: Sarcopenia: Causes, Consequences, and Preventions, TheJournalsofGerontology:SeriesA, Volume 58, Issue 10, October 2003, Pages M911–M916,.

Hidalgo-Cantabrana C, Delgado S, Ruiz L, Ruas-Madiedo P, Sánchez B, Margolles A. Bifidobacteria and Their Health-Promoting Effects. Microbiol Spectr. 2017; 5(3): 10.1128/microbiolspec.bad-0010-2016. doi: 10.1128/microbiolspec.BAD-0010-2016. PMID: 28643627; PMCID: PMC11687494.

Liu J, Li W, Yao C, Yu J, Zhang H. Comparative genomic analysis revealed genetic divergence between Bifidobacterium catenulatum subspecies present in infant versus adult guts. BMC Microbiol. 2022;22(1):158. doi: 10.1186/s12866-022-02573-3. PMID: 35710325; PMCID: PMC9202165.

Lu W, Pei Z, Zang M, Lee YK, Zhao J, Chen W, Wang H, Zhang H. Comparative Genomic Analysis of Bifidobacterium bifidum Strains Isolated from Different Niches. Genes (Basel). 2021; 12(10):1504. doi: 10.3390/genes12101504. PMID: 34680899; PMCID: PMC8535415.

Doron S, Snydman DR. Risk and safety of probiotics. Clin Infect Dis. 2015;60 Suppl 2(Suppl 2): S129-34. doi: 10.1093/cid/civ085. PMID: 25922398; PMCID: PMC4490230.

Christofi T, Panayidou S, Dieronitou I, Michael C, Apidianakis Y. Metabolic output defines Escherichia coli as a health-promoting microbe against intestinal Pseudomonas aeruginosa. Sci Rep. 2019;9(1):14463. Doi: 10.1038/s41598-019-51058-3. PMID: 31595010; PMCID: PMC6783455.

Desai MS, Seekatz AM, Koropatkin NM, Kamada N, Hickey CA, Wolter M, Pudlo NA, Kitamoto S, Terrapon N, Muller A, Young VB, Henrissat B, Wilmes P, Stappenbeck TS, Núñez G, Martens EC. A Dietary Fiber-Deprived Gut Microbiota Degrades the Colonic Mucus Barrier and Enhances Pathogen Susceptibility. Cell. 2016;167(5):1339–1353.e21. doi: 10.1016/j.cell.2016.10.043. PMID: 27863247; PMCID: PMC5131798.

Sun Z, Zhang W, Guo C, Yang X, Liu W, Wu Y, Song Y, Kwok LY, Cui Y, Menghe B, Yang R, Hu L, Zhang H. Comparative genomic analysis of 45 type strains of the genus Bifidobacterium: a snapshot of its genetic diversity and evolution. PLoS One. 2015; 10(2): e0117912. doi: 10.1371/journal.pone.0117912. PMID: 25658111; PMCID: PMC4319941.

Dao MC, Everard A, Aron-Wisnewsky J, Sokolovska N, Prifti E, Verger EO, Kayser BD, Levenez F, Chilloux J, Hoyles L; MICRO-Obes Consortium; Dumas ME, Rizkalla SW, Doré J, Cani PD, Clément K. Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology. Gut. 2016;65(3):426– 36. doi: 10.1136/gutjnl-2014-308778. Epub 2015 Jun 22. PMID: 26100928.

Depommier C, Everard A, Druart C, Plovier H, Van Hul M, Vieira-Silva S, Falony G, Raes J, Maiter D, Delzenne NM, de Barsy M, Loumaye A, Hermans MP, Thissen JP, de Vos WM, Cani PD. Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: a proof-of-concept exploratory study. Nat Med. 2019;25(7):1096–1103. doi: 10.1038/s41591-019-0495-2. Epub 2019 Jul 1. PMID: 31263284; PMCID: PMC6699990.

Zhou Q, Zhang Y, Wang X, Yang R, Zhu X, Zhang Y, Chen C, Yuan H, Yang Z, Sun L. Gut bacteria Akkermansia is associated with reduced risk of obesity: evidence from the American Gut Project. Nutr Metab (Lond). 2020;17:90. doi: 10.1186/s12986-020-00516-1. PMID: 33110437; PMCID: PMC7583218.

Shang J, Zhao F, Cao Y, Ping F, Wang W, Li Y. HMGB1 mediates lipopolysaccharide-induced macrophage autophagy and pyroptosis. BMC Mol Cell Biol. 2023;24(1):2. doi: 10.1186/s12860-023-00464-7. PMID: 36658496; PMCID: PMC9854035.

Bermúdez V, Tenconi PE, Giusto NM, Mateos MV. Lipopolysaccharide-Induced Autophagy Mediates Retinal Pigment Epithelium Cells Survival. Modulation by the Phospholipase D Pathway. Front Cell Neurosci. 2019;13:154. Doi: 10.3389/fncel.2019.00154. PMID: 31327962; PMCID: PMC6497095.

Yuan H, Perry CN, Huang C, Iwai-Kanai E, Carreira RS, Glembotski CC, Gottlieb RA. LPS-induced autophagy is mediated by oxidative signaling in cardiomyocytes and is associated with cytoprotection. Am J Physiol Heart Circ Physiol. 2009;296(2):H470-9. doi: 10.1152/ajpheart.01051.2008. Epub 2008 Dec 19. PMID: 19098111; PMCID: PMC2643899.

Comments (0)

No login
gif