The role of branched chain aminotransferase in the interrelated pathways of type 2 diabetes mellitus and Alzheimer’s disease

Ong KL, Stafford LK, McLaughlin SA, Boyko EJ, Vollset SE, Smith AE, et al. Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: a systematic analysis for the Global Burden of Disease Study 2021. The Lancet. 2023;402:203–34.

Michailidis M, Moraitou D, Tata DA, Kalinderi K, Papamitsou T, Papaliagkas V. Alzheimer’s disease as type 3 diabetes: common pathophysiological mechanisms between Alzheimer’s disease and type 2 diabetes. Int J Mol Sci. 2022;23:2687.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mittal K, Mani RJ, Katare DP. Type 3 diabetes: cross talk between differentially regulated proteins of type 2 diabetes mellitus and Alzheimer’s disease. Sci Rep. 2016;6:25589. https://doi.org/10.1038/srep25589

You Y, Liu Z, Chen Y, Xu Y, Qin J, Guo S, et al. The prevalence of mild cognitive impairment in type 2 diabetes mellitus patients: a systematic review and meta-analysis. Acta Diabetol. 2021;58:671–85.

Article  PubMed  Google Scholar 

Nichols E, Vos T. The estimation of the global prevalence of dementia from 1990–2019 and forecasted prevalence through 2050: an analysis for the Global Burden of Disease (GBD) study 2019. Alzheimer’s & Dementia. 2021;17:e051496.

Article  Google Scholar 

Adeva-Andany MM, López-Maside L, Donapetry-García C, Fernández-Fernández C, Sixto-Leal C. Enzymes involved in branched-chain amino acid metabolism in humans. Amino Acids. 2017;49:1005–28.

Article  CAS  PubMed  Google Scholar 

Amorim Franco TM, Favrot L, Vergnolle O, Blanchard JS. Mechanism-based inhibition of the mycobacterium tuberculosis branched-chain aminotransferase by d- and l-Cycloserine. ACS Chem Biol. 2017;12:1235–44.

Article  CAS  PubMed  Google Scholar 

Mehaffey MR, Sanders JD, Holden DD, Nilsson CL, Brodbelt JS. Multistage ultraviolet photodissociation mass spectrometry to characterize single amino acid variants of human mitochondrial BCAT2. Anal Chem. 2018;90:9904–11.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ananieva EA, Patel CH, Drake CH, Powell JD, Hutson SM. Cytosolic branched chain aminotransferase (BCATc) regulates mTORC1 signaling and glycolytic metabolism in CD4+ T cells. J Biol Chem. 2014;289:18793–804.

Article  CAS  PubMed  PubMed Central  Google Scholar 

DeSantiago S, Torres N, Hutson S, Tovar AR. Induction of expression of branched-chain aminotransferase and alpha-keto acid dehydrogenase in rat tissues during lactation. Adv Exp Med Biol. 2001;501:93–9.

Article  CAS  PubMed  Google Scholar 

Sweatt AJ, Garcia-Espinosa MA, Wallin R, Hutson SM. Branched-chain amino acids and neurotransmitter metabolism: expression of cytosolic branched-chain aminotransferase (BCATc) in the cerebellum and hippocampus. J Comp Neurol. 2004;477:360–70.

Article  CAS  PubMed  Google Scholar 

Bixel MG, Shimomura Y, Hutson SM, Hamprecht B. Distribution of key enzymes of branched-chain amino acid metabolism in glial and neuronal cells in culture. J Histochem Cytochem. 2001;49:407–18.

Article  CAS  PubMed  Google Scholar 

Knerr I, Colombo R, Urquhart J, Morais A, Merinero B, Oyarzabal A, et al. Expanding the genetic and phenotypic spectrum of branched-chain amino acid transferase 2 deficiency. J Inherit Metab Dis. 2019;42:809–17.

Article  CAS  PubMed  Google Scholar 

Nong X, Zhang C, Wang J, Ding P, Ji G, Wu T. The mechanism of branched-chain amino acid transferases in different diseases: research progress and future prospects. Front Oncol. 2022;12:988290. https://doi.org/10.3389/fonc.2022.988290.

Toyokawa Y, Koonthongkaew J, Takagi H. An overview of branched-chain amino acid aminotransferases: functional differences between mitochondrial and cytosolic isozymes in yeast and human. Appl Microbiol Biotechnol. 2021;105:8059–72.

Article  CAS  PubMed  Google Scholar 

Conway ME. Emerging moonlighting functions of the branched-chain aminotransferase proteins. Antioxid Redox Signal. 2021;34:1048–67.

Article  CAS  PubMed  Google Scholar 

Billingsley KL, Park JM, Josan S, Hurd R, Mayer D, Spielman-Sun E, et al. The feasibility of assessing branched-chain amino acid metabolism in cellular models of prostate cancer with hyperpolarized [1-13C]-ketoisocaproate. Magn Reson Imaging. 2014;32:791–5.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Neinast M, Murashige D, Arany Z. Branched chain amino acids. Annu Rev Physiol. 2019;81:139–64.

Article  CAS  PubMed  Google Scholar 

McGarrah RW, Zhang GF, Christopher BA, Deleye Y, Walejko JM, Page S, et al. Translational physiology: dietary branched-chain amino acid restriction alters fuel selection and reduces triglyceride stores in hearts of Zucker fatty rats. Am J Physiol Endocrinol Metab. 2020;318:E216.

Article  CAS  PubMed  Google Scholar 

Fernstrom JD. Branched-chain amino acids and brain function. J Nutr. 2005;135:1539S–1546S.

Article  CAS  PubMed  Google Scholar 

Newgard CB, An J, Bain JR, Muehlbauer MJ, Stevens RD, Lien LF, et al. A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab. 2009;9:311–26.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gastaldelli A, Gaggini M, DeFronzo RA. Role of adipose tissue insulin resistance in the natural history of type 2 diabetes: results from the San Antonio metabolism study. Diabetes. 2017;66:815–22.

Article  PubMed  Google Scholar 

Brownsey RW, Boone AN, Elliott JE, Kulpa JE, Lee WM. Regulation of acetyl-CoA carboxylase. Biochem Soc Trans. 2006;34:223–7.

Article  CAS  PubMed  Google Scholar 

White PJ, Lapworth AL, An J, Wang L, McGarrah RW, Stevens RD, et al. Branched-chain amino acid restriction in Zucker-fatty rats improves muscle insulin sensitivity by enhancing efficiency of fatty acid oxidation and acyl-glycine export. Mol Metab. 2016;5:538–51.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Harris M, El Hindy M, Usmari-Moraes M, Hudd F, Shafei M, Dong M, et al. BCAT-induced autophagy regulates Aβ load through an interdependence of redox state and PKC phosphorylation-implications in Alzheimer’s disease. Free Radic Biol Med. 2020;152:755–66.

Article  CAS  PubMed  Google Scholar 

Izumi Y, Yamada KA, Matsukawa M, Zorumski CF. Effects of insulin on long-term potentiation in hippocampal slices from diabetic rats. Diabetologia. 2003;46:1007–12.

Article  CAS  PubMed  Google Scholar 

Boulet MM, Chevrier G, Grenier-Larouche T, Pelletier M, Nadeau M, Scarpa J, et al. Alterations of plasma metabolite profiles related to adipose tissue distribution and cardiometabolic risk. Am J Physiol Endocrinol Metab. 2015;309:E736–46.

Article  CAS  PubMed  Google Scholar 

Bloomgarden Z. Diabetes and branched-chain amino acids: what is the link? J Diabetes. 2018;10:350–2.

Article  CAS  PubMed  Google Scholar 

Gannon NP, Schnuck JK, Vaughan RA. BCAA metabolism and insulin sensitivity – dysregulated by metabolic status? Mol Nutr Food Res. 2018;62(6):e1700756. https://doi.org/10.1002/mnfr.201700756.

Essential biochemistry for medicine : fry, Mitchell : free download, borrow, and streaming : internet archive [Internet]. [cited 2024 Jan 2]. Available from: https://archive.org/details/essentialbiochem0000frym. Accessed 2 Jan 2024.

Hers HG. The mechanism of the formation of seminal fructose and fetal fructose. Biochim Biophys Acta. 1960;37:127–38.

Article  CAS  PubMed  Google Scholar 

Murdoch RN, White IG. Studies of the metabolism of human spermatozoa. J Reprod Fertil. 1968;16:351–61.

Article  CAS  PubMed  Google Scholar 

jun Yan L. Redox imbalance stress in diabetes mellitus: role of the polyol pathway. Animal Model Exp Med. 2018;1:7–13.

Article  PubMed  PubMed Central  Google Scholar 

Zhang F, Zhao S, Yan W, Xia Y, Chen X, Wang W, et al. Branched chain amino acids cause liver injury in obese/diabetic mice by promoting adipocyte lipolysis and inhibiting hepatic autophagy. EBioMedicine. 2016;13:157–67.

Article  PubMed 

Comments (0)

No login
gif