Characterization of Greenhouse Gas Emissions from the Territory of the St. Petersburg Agglomeration, Russia, Based on the Results of EMME-2019 and EMME-2020 Mobile Observational Campaigns

WMO. Greenhouse Gas Bulletin. No. 18. 26 October 2022. https://library.wmo.int/idurl/4/58743. Cited February 22, 2024.

P. Ciais, D. Crisp, H. V. D. Gon, R. Engelen, M. Heimann, G. Janssens-Maenhout, P. Rayner, and M. Scholze, Towards a European Operational Observing System to Monitor Fossil CO2 Emissions – Final Report from the Expert Group. European Commission, 2015. www.copernicus.eu/sites/default/files/2019-09/CO2_Blue_report_2015.pdf. Cited February 22, 2024.

A. Babenhauserheide, F. Hase, and I. Morino, “Net CO2 fossil fuel emissions of Tokyo estimated directly from measurements of the Tsukuba TCCON site and radiosondes,” Atmos. Meas. Tech. 13, 2697–2710 (2020).

Article  Google Scholar 

K. Che, Zh. Cai, Y. Liu, L. Wu, D. Yang, Y. Chen, X. Meng, M. Zhou, J. Wang, L. Yao, and . Wang, “Lagrangian inversion of anthropogenic CO2 emissions from Beijing using differential column measurements,” Environ. Res. Lett. 17 (7), 075001 (2022).

Article  ADS  Google Scholar 

F. Hase, M. Frey, and T. Blumenstock, J. Groß, M. Kiel, R. Kohlhepp, G. Tsidu Mengistu, Schafer, M. K. Sha, and J. Orphal, “Application of portable FTIR spectrometers for detecting greenhouse gas emissions of the major city Berlin,” Atmos. Meas. Tech. 8, 3059–3068 (2015).

Article  Google Scholar 

H. Ohyama, M. M. Frey, I. Morino, K. Shiomi, M. Nishihashi, T. Miyauchi, H. Yamada, M. Saito, M. Wakasa, T. Blumenstock, and F. Hase, “Anthropogenic CO2 emission estimates in the Tokyo metropolitan area from ground-based CO2 column observations,” Atmos. Chem. Phys. 23, 15097–15119 (2023).

Article  ADS  Google Scholar 

F. R. Vogel, M. Frey, J. Staufer, F. Hase, G. Broquet, I. Xueref-Remy, F. Chevallier, P. Ciais, M. K. Sha, P. Chelin, P. Jeseck, C. Janssen, Y. Te, J. Groß, T. Blumenstock, Q. Tu, and J. Orphal, “XCO2 in an emission hot-spot region: The COCCON Paris campaign 2015,” Atmos. Chem. Phys. 19, 3271–3285 (2019).

Article  ADS  Google Scholar 

X. Zhao, J. Marshall, S. Hachinger, C. Gerbig, M. Frey, F. Hase, and J. Chen, “Analysis of total column CO2 and CH4 measurements in Berlin with WRF-GHG,” Atmos. Chem. Phys. 19, 11 279–11 302 (2019).

Article  Google Scholar 

M. V. Makarova, C. Alberti, D. V. Ionov, F. Hase, S. C. Foka, T. Blumenstock, T. Warneke, Y. A. Virolainen, V. S. Kostsov, M. Frey, A. V. Poberovskii, Y. M. Timofeyev, N. N. Paramonova, K. A. Volkova, N. A. Zaitsev, E. Y. Biryukov, S. I. Osipov, B. K. Makarov, A. V. Polyakov, V. M. Ivakhov, H. Kh. Imhasin, and E. F. Mikhailov, “Emission Monitoring Mobile Experiment (EMME): An overview and first results of the St. Petersburg megacity campaign 2019,” Atmos. Meas. Tech. 14, 1047–1073 (2021).

Article  Google Scholar 

D. V. Ionov, M. V. Makarova, F. Hase, S. C. Foka, V. S. Kostsov, C. Alberti, T. Blumenstock, T. Warneke, and Y. A. Virolainen, “The CO2 integral emission by the megacity of St. Petersburg as quantified from ground-based FTIR measurements combined with dispersion modeling,” Atmos. Chem. Phys. 21, 10 939–10 963 (2021).

Article  Google Scholar 

R. R. Draxler and G. D. Hess, “An overview of the HYSPLIT_4 modelling system for trajectories, dispersion, and deposition,” Aust. Meteor. Mag 47, 295–308 (1998).

MATH  Google Scholar 

A. F. Stein, R. R. Draxler, G. D. Rolph, B. J. B. Stunder, M. D. Cohen,and F. Ngan, “NOAA’S HYSPLIT atmospheric transport and dispersion modeling system,” Bull. Amer. Meteor. Soc. 96, 2059–2077.

M. Frey, M. K. Sha, F. Hase, M. Kiel, T. Blumenstock, R. Harig, G. Surawicz, N. M. Deutscher, K. Shiomi, J. E. Franklin, H. Bosch, J. Chen, M. Grutter, H. Ohyama, Y. Sun, A. Butz, TsiduG. Mengistu, D. Ene, D. Wunch, Z. Cao, O. Garcia, M. Ramonet, F. Vogel, and J. Orphal, “Building the COllaborative Carbon Column Observing Network (COCCON): Long-term stability and ensemble performance of the EM27/SUN Fourier transform spectrometer,” Atmos. Meas. Tech. 12, 1513–1530 (2019).

Article  Google Scholar 

B. de Foy, J. J. Schauer, A. Lorente, and T. Borsdorff, “Investigating high methane emissions from urban areas detected by TROPOMI and their association with untreated wastewater,” Environ. Res. Lett. 18, 044004 (2023).

Article  ADS  Google Scholar 

J. Chen, F. Dietrich, J. E. Franklin, T. S. Jones, B. Andre, A. Luther, R. Kleinschek, F. Hase, M. Wenig, S. Ye, A. Nouri, M. Frey, C. Knote, C. Alberti, and S. Wofsy, “Mesoscale column network for assessing GHG and NOx emissions in Munich,” in Geophysical Research Abstracts, Vol. 20, EGU General Assembly 2018 (Copernicus Publications, 2018).

J. E. Franklin, T. S. Jones, J. Chen, H. Parker, J. Hedelius, P. Wennberg, M. K. Dubey, C. Ron Cohen, A. Guha, M. Sargent, K. J. Davis, L. Mielke, M. Fischer, and S. Wofsy, “A three-dimensional observation network for determining urban emissions of CO2 and CH4,” in 2017 North American Carbon Program (North Bethesda, MD, USA, 2017). www.nacarbon.org/meeting_2017/abs_and_discussions/mtg2017_ab_searchab_id161.html. Cited February 22, 2024.

J. Chen, C. Viatte, J. K. Hedelius, T. Jones, J. E. Franklin, H. Parker, E. W. Gottlieb, P. O. Wennberg, M. K. Dubey, and S. C. Wofsy, “Differential column measurements using compact solar-tracking spectrometers,” Atmos. Chem. Phys. 16, 8479–8498 (2016).

Article  ADS  Google Scholar 

www.infoeco.ru/index.php?id=8780. Cited February 22, 2024.

D. Huo, X. Huang, X. Dou, P. Ciais, Y. Li, Z. Deng, Y. Wang, D. Cui, F. Benkhelifa, T. Sun, B. Zhu, G. Roest, K. R. Gurney, P. Ke, R. Guo, C. Lu, X. Lin, A. Lovell, K. Appleby, P. L. DeCola, J. Steven, S. J. Davis, and Z. Liu, “Carbon monitor cities near-real-time daily estimates of CO2 emissions from 1500 cities worldwide,” Sci. Data 9, 533 (2022).

Article  Google Scholar 

M. Crippa, E. Solazzo, G. Huang, D. Guizzardi, E. Koffi, M. Muntean, C. Schieberle, R. Friedrich, and G. Janssens-Maenhout, “High resolution temporal profiles in the emissions database for global atmospheric research,” Sci. Data 7, 121 (2020).

Article  Google Scholar 

M. V. Makarova, D. K. Arabadzhyan, S. Ch. Foka, N. N. Paramonova, A. V. Poberovskii, Yu. M. Timofeev, N. V. Pankratova, and V. S. Rakitin, “Estimation of nocturnal area fluxes of carbon cycle gases in Saint Petersburg suburbs,” Russ. Meteorol. Hydrol. 43 (7), 449–455 (2018).

Article  Google Scholar 

M. V. Makarova, A. V. Poberovskii, S. V. Yagovkina, I. L. Karol, V. E. Lagun, N. N. Paramonova, A. I. Reshetnikov, and V. I. Privalov, “Study of the formation of the methane field in the atmosphere over northwestern Russia,” Izv., Atmos. Ocean. Phys. 42 (2), 215–227 (2006).

Article  Google Scholar 

A. V. Zinchenko, N. N. Paramonova, V. I. Privalov, and A. I. Reshetnikov, “Estimation of methane emissions in the St. Petersburg, Russia, region: An atmospheric nocturnal boundary layer budget approach,” J. Geophys. Res. 107 (D20), 4416 (2002).

Article  Google Scholar 

A. Font, C. S. B. Grimmond, S. Kotthaus, J.-A. Morgui, C. Stockdale, E. O’Connor, M. Priestman, and B. Barratt, “Daytime CO2 urban surface fluxes from airborne measurements, eddy-covariance observations and emissions inventory in Greater London,” Environ. Pollut. 196, 98–106 (2015).

Article  Google Scholar 

X. L. Cheng, X. M. Liu, Y. J. Liu, and F. Hu, “Characteristics of CO2 concentration and flux in the Beijing urban area,” J. Geophys. Res. Atmos. 123, 1785–1801 (2018).

Article  ADS  MATH  Google Scholar 

C. Park, S. Jeong, M. S. Park, J. Yun, S.-S. Lee, and S.-H. Park, “Spatiotemporal variations in urban CO2 flux with land-use types in Seoul,” Carbon Balance Manag. 17 (3) (2022).

S. J. O’Shea, G. Allen, Z. L. Fleming, and S. J.-B. Bauguitte, C. J. Percival, M. W. Gallagher, J. Lee, C. Helfter, and E. Nemitz, “Area fluxes of carbon dioxide, methane, and carbon monoxide derived from airborne measurements around Greater London: A case study during summer 2012,” J. Geophys. Res.: Atmos. 119, 4940–4952 (2014).

Article  ADS  Google Scholar 

M. Zimnoch, J. Godlowska, J. M. Necki, and K. Rozanski, “Assessing surface fluxes of CO2 and CH4 in urban environment: A reconnaissance study in Krakow, Southern Poland,” Tellus B 62, 573–580 (2010).

Article  ADS  MATH  Google Scholar 

A. V. Zinchenko, A. I. Reshetnikov, N. N. Paramonova, V. I. Privalov, V. S. Titov, K. V. Kazakova, and B. P. Katsnel’son, " Study of methane and carbon dioxide emissions at solid waste landfills in the vicinity of St. Petersburg,” Prikladnaya meteorologiya. Trudy Nauchno-Issledovatel’skogo Tsentra Distantsionnogo Zondirovaniya Atmosfery (Filial GGO) 4 (552), 126–138 (2002).

Google Scholar 

S. J. Silva, A. F. Arellano, and H. M. Worden, “Toward anthropogenic combustion emission constraints from space-based analysis of urban CO2/CO sensitivity,” Geophys. Rev. Lett. 40, 4971–4976 (2013).

Article  ADS  MATH  Google Scholar 

www.gov.spb.ru/static/writable/ckeditor/uploads/-2022/06/27/05/%D0%94%D0%BE%D0%BA%D0%BB%D0%B0%D0%B4_2022_%D1%81%D0%BE%D0%B1%D1%80%D0%B0%D0%BD%D0%BD%D1%8B%D0%B9.pdf. Cited February 22, 2024.

S. Ch. Foka, M. V. Makarova, A. V. Poberovsky, D. V. Ionov, E. V. Abakumov, “Abakumov E.V. Analysis of mixing ratios of greenhouse carbon-containing gases at the atmospheric monitoring station of St. Petersburg State University,” Atmos. Ocean. Opt. 37 (1), 74–81 (2024).

Article  Google Scholar 

J. Turnbull, C. Sweeney, A. Karion, T. Newberger, P. Tans, S. Lehman, K. J. Davis, N. L. Miles, S. J. Richardson, T. Lauvaux, M. O. Cambaliza, P. Shepson, K. Gurney, R. Patarasuk, and A. Zondervan, “Towards quantification and source sector identification of fossil fuel CO2 emissions from an urban area: Results from the INFLUX experiment,” J. Geophys. Res.: Atmos. 120, 292–312 (2015).

Article  ADS  Google Scholar 

Comments (0)

No login
gif