Puntonet J, Gorgiard C, Soussy N, Soyer P, Dion E. Body packing, body stuffing and body pushing: Characteristics and pitfalls on low-dose CT. Clinical Imaging. 2021;79:244-50.
Pinto A, Reginelli A, Pinto F, Sica G, Scaglione M, Berger FH, et al. Radiological and practical aspects of body packing. The British journal of radiology. 2014;87(1036):20130500.
HASANIAN MH, ABOU ALMASOUMI Z. Consequence of body packing of illicit drugs. 2007.
Pinto A, Reginelli A, Pinto F, Sica G, Scaglione M, Berger FH, et al. Radiological and practical aspects of body packing. British Journal of Radiology. 2014;87(1036).
Reginelli A, Russo A, Urraro F, Maresca D, Martiniello C, D’Andrea A, et al. Imaging of body packing: errors and medico-legal issues. Abdominal Imaging. 2015;40(7):2127-42.
Ganatra N, editor A Comprehensive Study of Applying Object Detection Methods for Medical Image Analysis. 2021 8th International Conference on Computing for Sustainable Global Development (INDIACom); 2021 17-19 March 2021.
Pinto-Coelho L. How Artificial Intelligence Is Shaping Medical Imaging Technology: A Survey of Innovations and Applications. Bioengineering (Basel). 2023;10(12).
Li M, Jiang Y, Zhang Y, Zhu H. Medical image analysis using deep learning algorithms. Front Public Health. 2023;11:1273253.
Al-Antari MA. Artificial Intelligence for Medical Diagnostics-Existing and Future AI Technology! Diagnostics (Basel). 2023;13(4).
Ya-ting F, Qiong L, Tong X. New Opportunities and Challenges for Forensic Medicine in the Era of Artificial Intelligence Technology# br. Journal of Forensic Medicine. 2020;36(1):77.
Nakada A, Niikura R, Otani K, Kurose Y, Hayashi Y, Kitamura K, et al. Improved Object Detection Artificial Intelligence Using the Revised RetinaNet Model for the Automatic Detection of Ulcerations, Vascular Lesions, and Tumors in Wireless Capsule Endoscopy. Biomedicines. 2023;11(3).
Yamashita R, Nishio M, Do RKG, Togashi K. Convolutional neural networks: an overview and application in radiology. Insights into Imaging. 2018;9(4):611-29.
Wang Y, Zhang Y, Zhang Y, Zhao L, Sun X, Guo Z. SARD: Towards scale-aware rotated object detection in aerial imagery. IEEE Access. 2019;7:173855-65.
Tang T, Zhou S, Deng Z, Lei L, Zou H. Arbitrary-oriented vehicle detection in aerial imagery with single convolutional neural networks. Remote Sensing. 2017;9(11):1170.
Van Etten A, editor Satellite imagery multiscale rapid detection with windowed networks. 2019 IEEE winter conference on applications of computer vision (WACV); 2019: IEEE.
Chen K, Wang J, Pang J, Cao Y, Xiong Y, Li X, et al. MMDetection: Open mmlab detection toolbox and benchmark. arXiv preprint arXiv:190607155. 2019.
Sultana F, Sufian A, Dutta P. A review of object detection models based on convolutional neural network. Intelligent computing: image processing based applications. 2020:1-16.
Girshick R, Donahue J, Darrell T, Malik J, editors. Rich feature hierarchies for accurate object detection and semantic segmentation. Proceedings of the IEEE conference on computer vision and pattern recognition; 2014.
Ren S, He K, Girshick R, Sun J. Faster r-cnn: Towards real-time object detection with region proposal networks. Advances in neural information processing systems. 2015;28.
Carranza-García M, Torres-Mateo J, Lara-Benítez P, García-Gutiérrez J. On the performance of one-stage and two-stage object detectors in autonomous vehicles using camera data. Remote Sensing. 2020;13(1):89.
Shrivastava A, Gupta A, Girshick R, editors. Training region-based object detectors with online hard example mining. Proceedings of the IEEE conference on computer vision and pattern recognition; 2016.
Tian Z, Chu X, Wang X, Wei X, Shen C. Fully convolutional one-stage 3d object detection on lidar range images. Advances in neural information processing systems. 2022;35:34899-911.
Lin T-Y, Goyal P, Girshick R, He K, Dollár P, editors. Focal loss for dense object detection. Proceedings of the IEEE international conference on computer vision; 2017.
Liu S, Qi L, Qin H, Shi J, Jia J, editors. Path aggregation network for instance segmentation. Proceedings of the IEEE conference on computer vision and pattern recognition; 2018.
Ghiasi G, Lin T-Y, Le QV. Dropblock: A regularization method for convolutional networks. Advances in neural information processing systems. 2018;31.
Cai Z, Vasconcelos N. Cascade R-CNN: High quality object detection and instance segmentation. IEEE transactions on pattern analysis and machine intelligence. 2019;43(5):1483-98.
Lin T-Y, Dollár P, Girshick R, He K, Hariharan B, Belongie S, editors. Feature pyramid networks for object detection. Proceedings of the IEEE conference on computer vision and pattern recognition; 2017.
Nitish S. Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res. 2014;15:1.
Jiang Y, Zhu X, Wang X, Yang S, Li W, Wang H, et al. R2CNN: Rotational region CNN for orientation robust scene text detection. arXiv preprint arXiv:170609579. 2017.
Jaeger PF, Kohl SA, Bickelhaupt S, Isensee F, Kuder TA, Schlemmer H-P, et al., editors. Retina U-Net: Embarrassingly simple exploitation of segmentation supervision for medical object detection. Machine Learning for Health Workshop; 2020: PMLR.
Yan K, Bagheri M, Summers RM, editors. 3D context enhanced region-based convolutional neural network for end-to-end lesion detection. Medical Image Computing and Computer Assisted Intervention–MICCAI 2018: 21st International Conference, Granada, Spain, September 16-20, 2018, Proceedings, Part I; 2018: Springer.
Lee S-g, Bae JS, Kim H, Kim JH, Yoon S, editors. Liver lesion detection from weakly-labeled multi-phase ct volumes with a grouped single shot multibox detector. Medical Image Computing and Computer Assisted Intervention–MICCAI 2018: 21st International Conference, Granada, Spain, September 16-20, 2018, Proceedings, Part II 11; 2018: Springer.
Li Z, Zhang S, Zhang J, Huang K, Wang Y, Yu Y, editors. MVP-Net: multi-view FPN with position-aware attention for deep universal lesion detection. Medical Image Computing and Computer Assisted Intervention–MICCAI 2019: 22nd International Conference, Shenzhen, China, October 13–17, 2019, Proceedings, Part VI 22; 2019: Springer.
Nguyen EH, Yang H, Deng R, Lu Y, Zhu Z, Roland JT, et al. Circle representation for medical object detection. IEEE transactions on medical imaging. 2021;41(3):746-54.
Taheri MS, Moharamzad Y, Nahvi V. Abdominal CT findings of ruptured opium packets in a body packer. European Journal of Radiology Extra. 2009;70(1):e21-e3.
Shahnazi M, Taheri MS, Pourghorban R. Body packing and its radiologic manifestations: a review article. Iranian Journal of Radiology. 2011;8(4):205.
Tsang HKP, Wong CKK, Wong OF, Chan WLW, Ma HM, Lit CHA. Radiological features of body packers: An experience from a regional accident and emergency department in close proximity to the Hong Kong International Airport. Hong Kong Journal of Emergency Medicine. 2018;25(4):202-10.
Niewiarowski S, Gogbashian A, Afaq A, Kantor R, Win Z. Abdominal X-ray signs of intra-intestinal drug smuggling. Journal of Forensic and Legal Medicine. 2010;17(4):198-202.
Yelleni SH, Kumari D, Srijith P. Monte Carlo DropBlock for modeling uncertainty in object detection. Pattern Recognition. 2024;146:110003.
Comments (0)