1. Hernandes L, Pereira LM, Palazzo F, Mello JCP. Wound-healing evaluation of ointment from stryphnodendron adstringens (barbatimão) in rat skin. Braz J Pharm Sci. 2010;46(3):431-6. https://doi.org/10.1590/S1984-82502010000300005 DOI: https://doi.org/10.1590/S1984-82502010000300005
2. Silva LA, De Moura MI, Dambros CE, Freitas SL, Souza LA, Abreu MP. Stryphnodendron adstringens extract associated with the hooves trimming surgical procedure for the treatment of bovine digital dermatitis. Trop Anim Health Prod. 2013;45(5):1177-81. https://doi.org/10.1007/s11250-012-0343-6 DOI: https://doi.org/10.1007/s11250-012-0343-6
3. Pinto S, Bueno F, Panizzon G, Morais G, Dos Santos P, Baesso M, et al. Stryphnodendron adstringens: clarifying wound healing in streptozotocin-induced diabetic rats. Planta Med. 2015;81(12/13):1090-6. https://doi.org/10.1055/s-0035-1546209 DOI: https://doi.org/10.1055/s-0035-1546209
4. Ricardo LM, Dias BM, Mügge FL, Leite VV, Brandão MG. Evidence of traditionality of brazilian medicinal plants: the case studies of stryphnodendron adstringens (mart.) coville (barbatimão) barks and copaifera spp. (copaíba) oleoresin in wound healing. J Ethnopharmacol. 2018;219:319-36. https://doi.org/10.1016/j.jep.2018.02.042 DOI: https://doi.org/10.1016/j.jep.2018.02.042
5. Trevisan DA, Batista AF, Campanerut-Sá PA, De Medeiros Araújo DC, Ribeiro TDVR, De Mello JCP, et al. Synergistic activity of stryphnodendron adstringens and potassium sorbate against foodborne bacteria. Arch Microbiol. 2022;204(6):292. https://doi.org/10.1007/s00203-022-02904-y DOI: https://doi.org/10.1007/s00203-022-02904-y
6. Lopes GC, Sanches AC, Nakamura CV, Dias Filho BP, Hernandes L, Mello JCPD. Influence of extracts of stryphnodendron polyphyllum mart. and stryphnodendron obovatum benth. on the cicatrisation of cutaneous wounds in rats. J Ethnopharmacol. 2005;99(2):265-72. https://doi.org/ 10.1016/j.jep.2005.02.019 DOI: https://doi.org/10.1016/j.jep.2005.02.019
7. Gonçalves AR, Barateli LO, De Souza UJ, Pereira AM, Bertoni BW, Telles MPD. Development and characterization of microsatellite markers in Stryphnodendron adstringens (Leguminosae). Physiol Mol Biol Plants. 2020;26(10):2095-101. https://doi.org/10.1007/s12298-020-00876-1
8. Da S. Fernandes DG, Andrade VB, Lucena LN, Ambrosio FN, De Souza ALM, Batista BL, et al. Cytotoxicity and antimicrobial properties of photosynthesized silver chloride nanoparticles using plant extract from stryphnodendron adstringens (martius) coville. J Clust Sci. 2022;33(2):687-95. https://doi.org/10.1007/s10876-021-02011-w
9. Bersanetti PA, Da Cruz LG, Carlstron R, Schor P, Morandim-Giannetti AD. DSC characterization of enzymatic digestion of corneas treated with plant extracts rich in polyphenols. J Therm Anal Calorim. 2019;138(5):3797-802. https://doi.org/10.1007/s10973-022-11730-9 DOI: https://doi.org/10.1007/s10973-019-08534-9
10. Gonçalves AR, Barateli LO, De Souza UJ, Pereira AM, Bertoni BW, Telles MP. Development and characterization of microsatellite markers in stryphnodendron adstringens (leguminosae). Physiol Mol Biol Plants. 2020;26(10):2095-101.https://doi.org/10.1007/s12298-020-00876-1 DOI: https://doi.org/10.1007/s12298-020-00876-1
11. Da S. Fernandes DG, Andrade VB, Lucena LN, Ambrosio FN, De Souza AL, Batista BL, et al. Cytotoxicity and antimicrobial properties of photosynthesized silver chloride nanoparticles using plant extract from stryphnodendron adstringens (martius) coville. J Clust Sci. 2022;33(2):687-95. https://doi.org/10.1007/s10876-021-02011-w DOI: https://doi.org/10.1007/s10876-021-02011-w
12. Pellenz NL, Barbisan F, Azzolin VF, Duarte T, Bolignon A, Mastella MH, et al. Analysis of in vitro cyto- and genotoxicity of barbatimão extract on human keratinocytes and fibroblasts. BioMed Res Int. 2018;2018:1-11. https://doi.org/10.1155/2018/1942451 DOI: https://doi.org/10.1155/2018/1942451
13. Stunova A, Vistejnova L. Dermal fibroblasts – A heterogeneous population with regulatory function in wound healing. Cytokine Growth Factor Rev. 2018;39:137-50. https://doi.org/10.1016/j.cytogfr.2018.01.003
14. Janda J, Nfonsam V, Calienes F, Sligh JE, Jandova J. Modulation of ROS levels in fibroblasts by altering mitochondria regulates the process of wound healing. Arch Dermatol Res. 2016;308(4):239-48. https://doi.org/10.1007/s00403-016-1628-9
15. Tsirogianni AK, Moutsopoulos NM, Moutsopoulos HM. Wound healing: Immunological aspects. Injury. 2006;37(1):S5-12. https://doi.org/10.1016/j.injury.2006.02.035 DOI: https://doi.org/10.1016/j.injury.2006.02.035
16. Franková J, Pivodová V, Vágnerová H, Juránová J, Ulrichová J. Effects of silver nanoparticles on primary cell cultures of fibroblasts and keratinocytes in a wound-healing model. J Appl Biomater Funct Mater. 2016;14(2):137-42. https://doi.org/10.5301/jabfm.5000268 DOI: https://doi.org/10.5301/jabfm.5000268
17. Singh S, Young A, McNaught CE. The physiology of wound healing. Surg Oxf. 2017;35(9):473-7. https://doi.org/10.1016/j.mpsur.2017.06.004 DOI: https://doi.org/10.1016/j.mpsur.2017.06.004
18. Nicolaus C, Junghanns S, Hartmann A, Murillo R, Ganzera M, Merfort I. In vitro studies to evaluate the wound healing properties of calendula officinalis extracts. J Ethnopharmacol. 2017;196:94-103. https://doi.org/10.1016/j.jep.2016.12.006 DOI: https://doi.org/10.1016/j.jep.2016.12.006
19. Barbisan F, Azzolin VF, Teixeira CF, Mastella MH, Ribeiro EE, Do Prado-Lima P, et al. Xanthine-catechin mixture enhances lithium-induced anti-inflammatory response in activated macrophages in vitro. BioMed Res Int. 2017;2017:1-10. https://doi.org/10.1155/2017/4151594 DOI: https://doi.org/10.1155/2017/4151594
20. Jentzsch AM, Bachmann H, Fürst P, Biesalski HK. Improved analysis of malondialdehyde in human body fluids. Free Radic Biol Med. 1996;20(2):251-6. https://doi.org/10.1016/0891-5849(95)02043-8 DOI: https://doi.org/10.1016/0891-5849(95)02043-8
21. Morabito F, Cristani M, Saija A, Stelitano C, Callea V, Tomaino A, et al. Lipid peroxidation and protein oxidation in patients affected by Hodgkin’s lymphoma. Mediators Inflamm. 2004;13(5-6):381-3. https://doi.org/10.1080/09629350400008760 DOI: https://doi.org/10.1080/09629350400008760
22. Pamies D.et al. Good cell culture practice for stem cells and stem-cell-derived models. 2017;34(1):95-132. https://doi.org/10.14573/altex.1607121 DOI: https://doi.org/10.14573/altex.1607121
23. Sun BK, Siprashvili Z, Khavari PA. Advances in skin grafting and treatment of cutaneous wounds. Science. 2014;346(6212):941-5. https://doi.org/10.1126/science.1253836 DOI: https://doi.org/10.1126/science.1253836
24. Ibrahim N, Wong S, Mohamed I, Mohamed N, Chin KY, Ima-Nirwana S, et al. Wound healing properties of selected natural products. Int J Environ Res Public Health. 2018;15(11):2360. https://doi.org/10.3390/ijerph15112360 DOI: https://doi.org/10.3390/ijerph15112360
25. Li M, Xu J, Shi T, Yu H, Bi J, Chen G. Epigallocatechin‐3‐gallate augments therapeutic effects of mesenchymal stem cells in skin wound healing. Clin Exp Pharmacol Physiol. 2016;43(11):1115-24. https://doi.org/10.1111/1440-1681.12652 DOI: https://doi.org/10.1111/1440-1681.12652
26. Yang D, Moh S, Son D, You S, Kinyua A, Ko C, et al. gallic acid promotes wound healing in normal and hyperglucidic conditions. Molecules. 2016;21(7):899. https://doi.org/10.3390/molecules21070899 DOI: https://doi.org/10.3390/molecules21070899
27. Romana-Souza B, Dos Santos JS, Monte-Alto-Costa A. Caffeic acid phenethyl ester promotes wound healing of mice pressure ulcers affecting NF-κB, NOS2 and NRF2 expression. Life Sci. 2018;207:158-65. https://doi.org/10.1016/j.lfs.2018.05.057 DOI: https://doi.org/10.1016/j.lfs.2018.05.057
28. Janda J, Nfonsam V, Calienes F, Sligh JE, Jandova J. Modulation of ROS levels in fibroblasts by altering mitochondria regulates the process of wound healing. Arch Dermatol Res. 2016;308(4):239-48. https://doi.org/10.1007/s00403-016-1628-9. DOI: https://doi.org/10.1007/s00403-016-1628-9
29. Stunova A, Vistejnova L. Dermal fibroblasts – A heterogeneous population with regulatory function in wound healing. Cytokine Growth Factor Rev.2018;39:137-50. https://doi.org/10.1016/j.cytogfr.2018.01.003 DOI: https://doi.org/10.1016/j.cytogfr.2018.01.003
30. Martin P, Nunan R. Cellular and molecular mechanisms of repair in acute and chronic wound healing. Br J Dermatol. 2015;173(2):370-8. https://doi.org/10.1111/bjd.13954 DOI: https://doi.org/10.1111/bjd.13954
31. Morry J, Ngamcherdtrakul W, Yantasee W. Oxidative stress in cancer and fibrosis: opportunity for therapeutic intervention with antioxidant compounds, enzymes, and nanoparticles. Redox Biol. 2017;11:240-53. https://doi.org/10.1016/j.redox.2016.12.011 DOI: https://doi.org/10.1016/j.redox.2016.12.011
32. Baldivia D, Leite D, Castro D, Campos J, Santos U, Paredes-Gamero E, et al. Evaluation of in vitro antioxidant and anticancer properties of the aqueous extract from the stem bark of stryphnodendron adstringens. Int J Mol Sci. 2018;19(8):2432. https://doi.org/ 10.3390/ijms19082432 DOI: https://doi.org/10.3390/ijms19082432
33. Fujiwara T, Dohi T, Maan ZN, Rustad KC, Kwon SH, Padmanabhan J, et al. Age‐associated intracellular superoxide dismutase deficiency potentiates dermal fibroblast dysfunction during wound healing. Exp Dermatol. 2019;28(4):485-92. https://doi.org/10.1111/exd.13404 DOI: https://doi.org/10.1111/exd.13404
34. Zhu G, Wang Q, Lu S, Niu Y. Hydrogen peroxide: a potential wound therapeutic target. Med Princ Pract. 2017;26(4):301-8. https://doi.org/10.1159/000475501 DOI: https://doi.org/10.1159/000475501
35. Ighodaro OM, Akinloye OA. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): their fundamental role in the entire antioxidant defence grid. Alex J Med.2018;54(4):287-93. https://doi.org/10.1016/j.ajme.2017.09.001 DOI: https://doi.org/10.1016/j.ajme.2017.09.001
36. Hujiahemaiti M, Sun X, Zhou J, Lv H, Li X, Qi M, et al. Effects of quercetin on human oral keratinocytes during re-epithelialization: an in vitro study. Arch Oral Biol. 2018;95:187-94. https://doi.org/10.1016/j.archoralbio.2018.08.004 DOI: https://doi.org/10.1016/j.archoralbio.2018.08.004
37. Song X, Li J, Wang J, Chen L. Quercetin molecularly imprinted polymers: preparation, recognition characteristics and properties as sorbent for solid-phase extraction. Talanta. 2009;80(2):694-702. https://doi.org/10.1016/j.talanta.2009.07.051 DOI: https://doi.org/10.1016/j.talanta.2009.07.051
Comments (0)