3T dilated inception network for enhanced autism spectrum disorder diagnosis using resting-state fMRI data

AbedinzadehTorghabeh F, Modaresnia Y, Moattar MH (2024) Hybrid deep transfer learning-based early diagnosis of autism spectrum disorder using scalogram representation of electroencephalography signals. Med Biol Eng Compu 62(2):495–503. https://doi.org/10.1007/s11517-023-02959-z

Article  Google Scholar 

Alkahtani H, Aldhyani TH, Alzahrani MY (2023) Deep learning algorithms to identify autism spectrum disorder in children-based facial landmarks. Appl Sci 13(8):4855. https://doi.org/10.3390/app13084855

Article  Google Scholar 

Al-Qazzaz NK, Aldoori AA, Buniya A, Ali SHBM, Ahmad SA (2024) Transfer learning and hybrid deep convolutional neural networks models for autism spectrum disorder classification from EEG signals. IEEE Access. https://doi.org/10.1109/ACCESS.2024.3396869

Article  Google Scholar 

Alsaidi M, Obeid N, Al-Madi N, Hiary H, Aljarah I (2024) A convolutional deep neural network approach to predict autism spectrum disorder based on eye-tracking scan paths. Information 15(3):133. https://doi.org/10.3390/info15030133

Article  Google Scholar 

Farooq MS, Tehseen R, Sabir M, Atal Z (2023) Detection of autism spectrum disorder (ASD) in children and adults using machine learning. Sci Rep 13(1):9605. https://doi.org/10.1038/s41598-023-35910-1

Article  PubMed  PubMed Central  Google Scholar 

Guo Q, Wang C, Xiao D, Huang Q (2023) A novel multi-label pest image classifier using the modified Swin Transformer and soft binary cross entropy loss. Eng Appl Artif Intell 126:107060. https://doi.org/10.1016/j.engappai.2023.107060

Article  Google Scholar 

Han J, Jiang G, Ouyang G, Li X (2022) A multimodal approach for identifying autism spectrum disorders in children. IEEE Trans Neural Syst Rehabil Eng 30:2003–2011. https://doi.org/10.1109/TNSRE.2022.3192431

Article  PubMed  Google Scholar 

Hu G, Du B, Wang X (2023) An improved black widow optimization algorithm for surfaces conversion. Appl Intell 53(6):6629–6670. https://doi.org/10.1007/s10489-022-03715-w

Article  Google Scholar 

Hu J, Chen GJ, Xue C, Liang P, Xiang Y, Zhang C, Chi X, Liu G, Ye Y, Cui D, Zhang D (2024) RSPSSL: a novel high-fidelity Raman spectral preprocessing scheme to enhance biomedical applications and chemical resolution visualization. Light Sci Appl 13(1):52. https://doi.org/10.1038/s41377-024-01394-5

Article  PubMed  PubMed Central  Google Scholar 

Jayanthi S, Priyadharshini V, Kirithiga V, Premalatha S (2024) Mental health status monitoring for people with autism spectrum disorder using machine learning. Int J Inf Technol 16(1):43–51. https://doi.org/10.1007/s41870-023-01524-z

Article  Google Scholar 

Jayaprakash D, Kanimozhiselvi CS (2024) Multinomial logistic regression method for early detection of autism spectrum disorders. Meas Sens. https://doi.org/10.1016/j.measen.2024.101125

Article  Google Scholar 

Kavitha V, Siva R (2024) HCBiLSTM-WOA: hybrid convolutional bidirectional long short-term memory with water optimization algorithm for autism spectrum disorder. Comput Methods Biomech Biomed Eng. https://doi.org/10.1080/10255842.2024.2399016

Article  Google Scholar 

Khan HU, Raza B, Shah MH, Usama SM, Tiwari P, Band SS (2023) SMDetector: small mitotic detector in histopathology images using faster R-CNN with dilated convolutions in backbone model. Biomed Signal Process Control 81:104414. https://doi.org/10.1016/j.bspc.2022.104414

Article  Google Scholar 

Lakhan A, Mohammed MA, Abdulkareem KH, Hamouda H, Alyahya S (2023) Autism spectrum disorder detection framework for children based on federated learning integrated CNN-LSTM. Comput Biol Med 166:107539. https://doi.org/10.1016/j.compbiomed.2023.107539

Article  PubMed  Google Scholar 

Mayya V, Kulkarni U, Surya DK, Acharya UR (2023) An empirical study of preprocessing techniques with convolutional neural networks for accurate detection of chronic ocular diseases using fundus images. Appl Intell 53(2):1548–1566. https://doi.org/10.1007/s10489-022-03490-8

Article  Google Scholar 

Mishra M, Pati UC (2023) A classification framework for Autism spectrum disorder detection using sMRI: optimizer based ensemble of deep convolution neural network with on-the-fly data augmentation. Biomed Signal Process Control 84:104686. https://doi.org/10.1016/j.bspc.2023.104686

Article  Google Scholar 

Nogay HS, Adeli H (2024) Multiple classification of brain MRI autism spectrum disorder by age and gender using deep learning. J Med Syst 48(1):15. https://doi.org/10.1007/s10916-023-02032-0

Article  PubMed  PubMed Central  Google Scholar 

Peketi S, Dhok SB (2023) Machine learning enabled p300 classifier for autism spectrum disorder using adaptive signal decomposition. Brain Sci 13(2):315. https://doi.org/10.3390/brainsci13020315

Article  PubMed  PubMed Central  Google Scholar 

Rasul RA, Saha P, Bala D, Karim SRU, Abdullah MI, Saha B (2024) An evaluation of machine learning approaches for early diagnosis of autism spectrum disorder. Healthc Anal 5:100293. https://doi.org/10.1016/j.health.2023.100293

Article  Google Scholar 

Rogala J, Żygierewicz J, Malinowska U, Cygan H, Stawicka E, Kobus A, Vanrumste B (2023) Enhancing autism spectrum disorder classification in children through the integration of traditional statistics and classical machine learning techniques in EEG analysis. Sci Rep 13(1):21748. https://doi.org/10.1038/s41598-023-49048-7

Article  PubMed  PubMed Central  Google Scholar 

Sadiq A, Al-Hiyali MI, Yahya N, Tang TB, Khan DM (2022) Non-oscillatory connectivity approach for classification of autism spectrum disorder subtypes using resting-state fMRI. IEEE Access 10:14049–14061. https://doi.org/10.1109/ACCESS.2022.3146719

Article  Google Scholar 

Saponaro S, Lizzi F, Serra G, Mainas F, Oliva P, Giuliano A, Calderoni S, Retico A (2024) Deep learning based joint fusion approach to exploit anatomical and functional brain information in autism spectrum disorders. Brain Inf 11(1):2. https://doi.org/10.1186/s40708-023-00217-4

Article  Google Scholar 

Shinde AV, Patil DD (2023) A multi-classifier-based recommender system for early autism spectrum disorder detection using machine learning. Healthc Anal 4:100211. https://doi.org/10.1016/j.health.2023.100211

Article  Google Scholar 

Sri VS, Sailu VH, Pradeepthi U, Sai PM, Kavitha M (2023) Disease detection using region-based convolutional neural network and ResNet. Data Metadata 2:135–135

Article  Google Scholar 

The Autism Dataset is available at https://www.kaggle.com/datasets/harsh0251/autism-dataset

The Autistic Children Facial Dataset is available at https://www.kaggle.com/datasets/imrankhan77/autistic-children-facial-data-set

The Autism Facial Image Dataset is available at https://www.kaggle.com/datasets/rahultejmora/autism-facial-image-dataset

The Autism Brain Imaging Data Exchange-I (ABIDE-I) dataset is available at https://github.com/OpenXAIProject/Preprocessed_ABIDE_Dataset

The Autismpreprocessed Dataset is available at https://www.kaggle.com/datasets/dswainsonsujana/autism-preprocessed

Vattikuti S, Chow CC (2010) A computational model for cerebral cortical dysfunction in autism spectrum disorders. Biol Psychiat 67(7):672–678. https://doi.org/10.1016/j.biopsych.2009.09.008

Article  PubMed  Google Scholar 

Vidal G, Sharpnack J, Pinedo P, Tsai IC, Lee AR, Martínez-López B (2023) Impact of sensor data pre-processing strategies and selection of machine learning algorithm on the prediction of metritis events in dairy cattle. Prevent Vet Med 215:105903. https://doi.org/10.1016/j.prevetmed.2023.105903

Article  Google Scholar 

Wadhera T, Bedi J, Sharma S (2023) Autism spectrum disorder prediction using bidirectional stacked gated recurrent unit with time-distributor wrapper: an EEG study. Neural Comput Appl 35(13):9803–9818. https://doi.org/10.1007/s00521-023-08218-4

Article  Google Scholar 

Wang N, Yao D, Ma L, Liu M (2022) Multi-site clustering and nested feature extraction for identifying autism spectrum disorder with resting-state fMRI. Medical Image Anal 75:102279. https://doi.org/10.1016/j.media.2021.102279

Article  Google Scholar 

Weng X, Xuan P, Heidari AA, Cai Z, Chen H, Mansour RF, Ragab M (2023) A vertical and horizontal crossover sine cosine algorithm with pattern search for optimal power flow in power systems. Energy 271:127000. https://doi.org/10.1016/j.energy.2023.127000

Article  Google Scholar 

Yin L, Yu Y, Han F, Wang Q (2024) Unveiling serotonergic dysfunction of obsessive-compulsive disorder on prefrontal network dynamics: a computational perspective. Cereb Cortex. https://doi.org/10.1093/cercor/bhae258

Article  PubMed  PubMed Central  Google Scholar 

Yu Y, Fan Y, Hou S, Wang Q (2023) Optogenetic stimulation of primary motor cortex regulates beta oscillations in the basal ganglia: a computational study. Commun Nonlinear Sci Numer Simul 117:106918. https://doi.org/10.1016/j.cnsns.2022.106918

Article  Google Scholar 

Yu Y, Han F, Wang Q (2024) Dynamic modeling of neuromodulation techniques: towards elaboration and individual specificity. Europhys Lett 145(3):32001. https://doi.org/10.1209/0295-5075/ad239b

Article  Google Scholar 

Zhang J, Feng F, Han T, Gong X, Duan F (2023) Detection of autism spectrum disorder using fMRI functional connectivity with feature selection and deep learning. Cogn Comput 15(4):1106–1117. https://doi.org/10.1007/s12559-021-09981-z

Article  Google Scholar 

Comments (0)

No login
gif