Regulatory Roles of SWI/SNF Chromatin Remodeling Complexes in Immune Response and Inflammatory Diseases

Luger KMA, Richmond RK, Sargent DF, Richmond TJ (1997) Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 389:251–260. https://doi.org/10.1038/38444

Article  CAS  PubMed  Google Scholar 

Fyodorov DV, Zhou BR, Skoultchi AI et al (2018) Emerging roles of linker histones in regulating chromatin structure and function. Nat Rev Mol Cell Bio 19:192–206. https://doi.org/10.1038/nrm.2017.94

Article  CAS  Google Scholar 

Mittal P, Roberts CWM (2020) The SWI/SNF complex in cancer-biology, biomarkers and therapy. Nat Rev Clin Oncol 17:435–448. https://doi.org/10.1038/s41571-020-0357-3

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mashtalir N, D’Avino AR, Michel BC et al (2018) Modular organization and assembly of SWI/SNF family chromatin remodeling complexes. Cell 175:1272. https://doi.org/10.1016/j.cell.2018.09.032

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mathur R, Alver BH, San Roman AK et al (2017) ARID1A loss impairs enhancer-mediated gene regulation and drives colon cancer in mice. Nat Genet 49:296–302. https://doi.org/10.1038/ng.3744

Article  CAS  PubMed  Google Scholar 

Gatchalian J, Malik S, Ho J et al (2018) A non-canonical BRD9-containing BAF chromatin remodeling complex regulates naive pluripotency in mouse embryonic stem cells. Nat Commun 9:5139. https://doi.org/10.1038/s41467-018-07528-9

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nakayama RT, Pulice JL, Valencia AM et al (2017) SMARCB1 is required for widespread BAF complex-mediated activation of enhancers and bivalent promoters. Nat Gen 49:1613. https://doi.org/10.1038/ng.3958

Article  CAS  Google Scholar 

Schick S, Rendeiro AF, Runggatscher K et al (2019) Systematic characterization of BAF mutations provides insights into intracomplex synthetic lethalities in human cancers. Nat Gen 51:1399. https://doi.org/10.1038/s41588-019-0477-9

Article  CAS  Google Scholar 

Wang XF, Wang S, Troisi EC et al (2019) BRD9 defines a SWI/SNF sub-complex and constitutes a specific vulnerability in malignant rhabdoid tumors. Nat Commun 10:1881. https://doi.org/10.1038/s41467-019-09891-7

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pagliaroli L, Porazzi P, Curtis AT et al (2021) Inability to switch from ARID1A-BAF to ARID1B-BAF impairs exit from pluripotency and commitment towards neural crest formation in ARID1B-related neurodevelopmental disorders. Nat Commun 12:6469. https://doi.org/10.1038/s41467-021-26810-x

Article  CAS  PubMed  PubMed Central  Google Scholar 

Barisic D, Stadler MB, Iurlaro M et al (2019) Mammalian ISWI and SWI/SNF selectively mediate binding of distinct transcription factors. Nature 569:136. https://doi.org/10.1038/s41586-019-1115-5

Article  CAS  PubMed  PubMed Central  Google Scholar 

Clapier CR, Iwasa J, Cairns BR et al (2017) Mechanisms of action and regulation of ATP-dependent chromatin-remodelling complexes. Nat Rev Mol Cell Bio 18:407–422. https://doi.org/10.1038/nrm.2017.26

Article  CAS  Google Scholar 

Chang ZY, Zhao GZ, Zhao Y et al (2020) BAF60a Deficiency in vascular smooth muscle cells prevents abdominal aortic aneurysm by reducing inflammation and extracellular matrix degradation. Arterioscl Throm Vas 40:2494–2507. https://doi.org/10.1161/Atvbaha.120.314955

Article  CAS  Google Scholar 

Lee S, Kim J, Min H et al (2020) RORgammat-driven T(H)17 Cell Differentiation requires epigenetic control by the Swi/Snf chromatin remodeling complex. iScience 23:101106. https://doi.org/10.1016/j.isci.2020.101106

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hebbes TR, Thorne AW, Cranerobinson C (1988) A direct link between core histone acetylation and transcriptionally active chromatin. EMBO J 7:1395–1402. https://doi.org/10.1002/j.1460-2075.1988.tb02956.x

Article  CAS  PubMed  PubMed Central  Google Scholar 

Barski A, Cuddapah S, Cui KR et al (2007) High-resolution profiling of histone methylations in the human genome. Cell 129:823–837. https://doi.org/10.1016/j.cell.2007.05.009

Article  CAS  PubMed  Google Scholar 

Greer EL, Shi Y (2012) Histone methylation: a dynamic mark in health, disease and inheritance. Nat Rev Genet 13:343–357. https://doi.org/10.1038/nrg3173

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim J, Kim H (2012) Recruitment and biological consequences of histone modification of H3K27me3 and H3K9me3. Ilar J 53:232–239. https://doi.org/10.1093/ilar.53.3-4.232

Article  CAS  PubMed  PubMed Central  Google Scholar 

Voigt P, Tee WW, Reinberg D (2013) A double take on bivalent promoters. Gene Dev 27:1318–1338. https://doi.org/10.1101/gad.219626.113

Article  CAS  PubMed  PubMed Central  Google Scholar 

Peters AHFM, Kubicek S, Mechtler K et al (2003) Partitioning and plasticity of repressive histone methylation states in mammalian chromatin. Mol Cell 12:1577–1589. https://doi.org/10.1016/S1097-2765(03)00477-5

Article  CAS  PubMed  Google Scholar 

Heintzman ND, Stuart RK, Hon G et al (2007) Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat Genet 39:311–318. https://doi.org/10.1038/ng1966

Article  CAS  PubMed  Google Scholar 

Mashtalir N, Dao HT, Sankar A et al (2021) Chromatin landscape signals differentially dictate the activities of mSWI/SNF family complexes. Science 373:306. https://doi.org/10.1126/science.abf8705

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kadoch C, Hargreaves DC, Hodges C et al (2013) Proteomic and bioinformatic analysis of mammalian SWI/SNF complexes identifies extensive roles in human malignancy. Nat Gen 45:592. https://doi.org/10.1038/ng.2628

Article  CAS  Google Scholar 

Shain AH, Pollack JR (2013) The spectrum of SWI/SNF mutations, ubiquitous in human cancers. Plos One 8:e55119. https://doi.org/10.1371/journal.pone.0055119

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhao GZ, Zhao Y, Lu HC et al (2022) BAF60c prevents abdominal aortic aneurysm formation through epigenetic control of vascular smooth muscle cell homeostasis. J Clin Invest 132(21):e158309. https://doi.org/10.1172/JCI158309

Qi XY, Qiu JX, Chang JL et al (2021) Brg1 restrains the pro-inflammatory properties of ILC3s and modulates intestinal immunity. Mucosal Immunol 14:38–52. https://doi.org/10.1038/s41385-020-0317-3

Article  CAS  PubMed  Google Scholar 

Kong Q, Zou JH, Zhang ZY et al (2022) BAF60a deficiency in macrophage promotes diet-induced obesity and metabolic inflammation. Diabetes 71:2136–2152. https://doi.org/10.2337/db22-0114

Article  CAS  PubMed  Google Scholar 

Kumar BV, Connors TJ, Farber DL (2018) Human T cell development, localization, and function throughout life. Immunity 48:202–213. https://doi.org/10.1016/j.immuni.2018.01.007

Article  CAS  PubMed  PubMed Central  Google Scholar 

Klein L, Kyewski B, Allen PM et al (2014) Positive and negative selection of the T cell repertoire: what thymocytes see (and don’t see). Nat Rev Immunol 14:377–391. https://do

Comments (0)

No login
gif