De Leeuw R, Klasser GD. Orofacial pain: guidelines for assessment, diagnosis, and management. Am J Orthod Dentofacial Orthop. 2008;134(1):171.
Kapos FP, Exposto FG, Oyarzo JF, Durham J. Temporomandibular disorders: a review of current concepts in aetiology, diagnosis and management. Oral Surg. 2020;13(4):321–34. https://doi.org/10.1111/ors.12473.
Article PubMed PubMed Central Google Scholar
Osiewicz M, Lobbezoo F, Ciapała B, Pytko-Polończyk J, Manfredini D. Pain predictors in a population of temporomandibular disorders patients. J Clin Med. 2020;9(2):452. https://doi.org/10.3390/jcm9020452.
Article PubMed PubMed Central Google Scholar
Progiante PS, Patussi M, Lawrence H, Goya S, Grossi PK, Grossi ML. Prevalence of temporomandibular disorders in an adult brazilian community population using the research diagnosis criteria (axis I and II) for temporomandibular disorders (teh Maringa study). Int J Prosthodont. 2015. https://doi.org/10.11607/ijp.4026.
Durham J, Shen J, Breckons M, Steele J, Araújo-Soares V, Exley C, et al. Healthcare cost and impact of persistent orofacial pain: the DEEP study cohort. J Dent Res. 2016;95(10):1147–54. https://doi.org/10.1177/0022034516648088.
Article CAS PubMed Google Scholar
Yamazaki Y, Ren K, Shimada M, Iwata K. Modulation of paratrigeminal nociceptive neurons following temporomandibular joint inflammation in rats. Exp Neurol. 2008;214(2):209–18. https://doi.org/10.1016/j.expneurol.2008.08.005.
Article PubMed PubMed Central Google Scholar
Chang Z, Okamoto K, Bereiter D. Differential ascending projections of temporomandibular joint-responsive brainstem neurons to periaqueductal gray and posterior thalamus of male and female rats. Neuroscience. 2012;203:230–43. https://doi.org/10.1016/j.neuroscience.2011.11.042.
Article CAS PubMed Google Scholar
Romero-Reyes M, Uyanik JM. Orofacial pain management: current perspectives. J Pain Res. 2014;7:99. https://doi.org/10.2147/JPR.S37593.
Article PubMed PubMed Central Google Scholar
De Leeuw R, Bertoli E, Schmidt JE, Carlson CR. Prevalence of traumatic stressors in patients with temporomandibular disorders. J Oral Maxillofac Surg. 2005;63(1):42–50. https://doi.org/10.1016/j.joms.2004.04.027.
Bonjardim L, Gaviao M, Pereira L. Anxiety and depression in adolescent and their relationship with mandibular disorders. Int J Prosthodont. 2008;38:347–52.
Bonjardim LR, Gavião MBD, Pereira LJ, Castelo PM. Anxiety and depression in adolescents and their relationship with signs and symptoms of temporomandibular disorders. Int J Prosthodont. 2005. https://doi.org/10.1016/S0084-3717(08)70265-4.
Gatchel RJ, Garofalo JP, Ellis E, Holt C. Major psychological disorders in acute and chronic TMD: an initial examination. J Am Dent Assoc. 1996;127(9):1365–74. https://doi.org/10.14219/jada.archive.1996.0450.
Article CAS PubMed Google Scholar
Pereira LJ, Pereira-Cenci T, Pereira SM, Cury AADB, Ambrosano GMB, Pereira AC, et al. Psychological factors and the incidence of temporomandibular disorders in early adolescence. Braz Oral Res. 2009;23(2):155–60. https://doi.org/10.1590/s1806-83242009000200011.
Kalladka M, Quek S, Heir G, Eliav E, Mupparapu M, Viswanath A. Temporomandibular joint osteoarthritis: diagnosis and long-term conservative management: a topic review. J Indian Prosthodont Soc. 2014;14(1):6–15. https://doi.org/10.1007/s13191-013-0321-3.
Nitzan D, Benoliel R, Heir G, Dolwick F. Pain and dysfunction of the temporomandibular joint. Orofacial pain and headache. Philadelphia: Mosby-Elsevier; 2008. p. 149–92.
Durham J, Steele J, Wassell R, Exley C, Meechan J, Allen P, et al. Creating a patient-based condition-specific outcome measure for temporomandibular disorders (TMDs): oral health impact profile for TMDs (OHIP-TMDs). J Oral Rehabil. 2011;38(12):871–83. https://doi.org/10.1111/j.1365-2842.2011.02233.x. (Epub 2011 Jul 20).
Article CAS PubMed Google Scholar
Li J, Ma K, Yi D, Chen D. Nociceptive behavioural assessments in mouse models of temporomandibular joint disorders. Int J Oral Sci. 2020;12(1):1–9. https://doi.org/10.1016/j.jdsr.2021.10.002.
Kerins C, Carlson D, McIntosh J, Bellinger L. Meal pattern changes associated with temporomandibular joint inflammation/pain in rats; analgesic effects. Pharmacol Biochem Behav. 2003;75(1):181–9. https://doi.org/10.1016/s0091-3057(03)00072-8.
Article CAS PubMed Google Scholar
Ren K. An improved method for assessing mechanical allodynia in the rat. Physiol Behav. 1999;67(5):711–6. https://doi.org/10.1016/s0031-9384(99)00136-5.
Article CAS PubMed Google Scholar
Peyron C, Tighe DK, Van Den Pol AN, De Lecea L, Heller HC, Sutcliffe JG, et al. Neurons containing hypocretin (orexin) project to multiple neuronal systems. J Neurosci. 1998;18(23):9996–10015. https://doi.org/10.1523/JNEUROSCI.18-23-09996.1998.
Article CAS PubMed PubMed Central Google Scholar
Sakurai T, Amemiya A, Ishii M, Matsuzaki I, Chemelli RM, Tanaka H, et al. Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell. 1998;92(4):573–85. https://doi.org/10.1016/s0092-8674(00)80949-6.
Article CAS PubMed Google Scholar
Razavi BM, Hosseinzadeh H. A review of the role of orexin system in pain modulation. Biomed Pharmacother. 2017;90:187–93. https://doi.org/10.1016/j.biopha.2017.03.053.
Article CAS PubMed Google Scholar
Mondal MS, Nakazato M, Date Y, Murakami N, Yanagisawa M, Matsukura S. Widespread distribution of orexin in rat brain and its regulation upon fasting. Biochem Biophys Res Commun. 1999;256(3):495–9. https://doi.org/10.1006/bbrc.1999.0362.
Article CAS PubMed Google Scholar
Yamamoto T, Nozaki-Taguchi N, Chiba T. Analgesic effect of intrathecally administered orexin-A in the rat formalin test and in the rat hot plate test. Br J Pharmacol. 2002;137(2):170–6. https://doi.org/10.1038/sj.bjp.0704851.
Article CAS PubMed PubMed Central Google Scholar
Bingham S, Davey P, Babbs A, Irving E, Sammons M, Wyles M, et al. Orexin-A, an hypothalamic peptide with analgesic properties. Pain. 2001;92(1–2):81–90. https://doi.org/10.1016/s0304-3959(00)00470-x.
Article CAS PubMed Google Scholar
Holland PR, Akerman S, Goadsby PJ. Orexin 1 receptor activation attenuates neurogenic dural vasodilation in an animal model of trigeminovascular nociception. J Pharmacol Exp Ther. 2005;315(3):1380–5. https://doi.org/10.1124/jpet.105.090951.
Article CAS PubMed Google Scholar
Holland P, Akerman S, Goadsby P. Modulation of nociceptive dural input to the trigeminal nucleus caudalis via activation of the orexin 1 receptor in the rat. Eur J Neurosci. 2006;24(10):2825–33. https://doi.org/10.1111/j.1460-9568.2006.05168.x.
Article CAS PubMed Google Scholar
Kooshki R, Abbasnejad M, Esmaeili-Mahani S, Raoof M. The role of trigeminal nucleus caudalis orexin 1 receptors in orofacial pain transmission and in orofacial pain-induced learning and memory impairment in rats. Physiol Behav. 2016;157:20–7. https://doi.org/10.1016/j.physbeh.2016.01.031.
Article CAS PubMed Google Scholar
Marcus JN, Aschkenasi CJ, Lee CE, Chemelli RM, Saper CB, Yanagisawa M, et al. Differential expression of orexin receptors 1 and 2 in the rat brain. J Comparative Neurol. 2001;435(1):6–25. https://doi.org/10.1002/cne.1190.
Trivedi P, Yu H, MacNeil DJ, Van der Ploeg L, Guan X-M. Distribution of orexin receptor mRNA in the rat brain. FEBS Lett. 1998;438(1–2):71–5. https://doi.org/10.1016/s0014-5793(98)01266-6.
Comments (0)