An S, Jeon YJ, Jo A, Lim HJ, Han YE, Cho SW et al (2018) Initial Influenza Virus Replication can be limited in allergic asthma through Rapid induction of type III interferons in respiratory epithelium. Front Immunol 9:986
Article PubMed PubMed Central Google Scholar
Baden LR, Drazen JM, Kritek PA, Curfman GD, Morrissey S, Campion EW (2009) H1N1 influenza a disease–information for health professionals. N Engl J Med 360(25):2666–2667
Article CAS PubMed Google Scholar
Benam KH, Denney L, Ho LP (2019) How the respiratory epithelium senses and reacts to Influenza Virus. Am J Respir Cell Mol Biol 60(3):259–268
Article CAS PubMed PubMed Central Google Scholar
Brody H (2019) Influenza Nat 573(7774):S49
Cheng J, Tao J, Li B, Shi Y, Liu H (2022) Swine influenza virus triggers ferroptosis in A549 cells to enhance virus replication. Virol J 19(1):104
Article CAS PubMed PubMed Central Google Scholar
Dou D, Revol R, Östbye H, Wang H, Daniels R (2018) Influenza A virus cell entry, replication, Virion Assembly and Movement. Front Immunol 9:1581
Article PubMed PubMed Central Google Scholar
Gupta D, Mohan S (2023) Influenza vaccine: a review on current scenario and future prospects. J Genet Eng Biotechnol 21(1):154
Article PubMed PubMed Central Google Scholar
Khan R, Khan A, Ali A, Idrees M (2019) The interplay between viruses and TRIM family proteins. Rev Med Virol 29(2):e2028
Koppula P, Zhuang L, Gan B (2021) Cystine transporter SLC7A11/xCT in cancer: ferroptosis, nutrient dependency, and cancer therapy. Protein Cell 12(8):599–620
Article CAS PubMed Google Scholar
Lee J, Roh JL (2022) SLC7A11 as a gateway of metabolic perturbation and ferroptosis vulnerability in Cancer. Antioxid (Basel) 11(12):2444
Lee HR, Lee MK, Kim CW, Kim M (2020) TRIM proteins and their roles in the Influenza Virus Life Cycle. Microorganisms 8(9):1424
Article CAS PubMed PubMed Central Google Scholar
Li P, Yu J, Huang F, Zhu YY, Chen DD, Zhang ZX et al (2023) SLC7A11-associated ferroptosis in acute injury diseases: mechanisms and strategies. Eur Rev Med Pharmacol Sci 27(10):4386–4398
Long JS, Mistry B, Haslam SM, Barclay WS (2019) Host and viral determinants of influenza a virus species specificity. Nat Rev Microbiol 17(2):67–81
Article CAS PubMed Google Scholar
Lv YW, Du Y, Ma SS, Shi YC, Xu HC, Deng L et al (2023) Proanthocyanidins attenuates ferroptosis against influenza-induced acute lung injury in mice by reducing IFN-γ. Life Sci 314:121279
Article CAS PubMed Google Scholar
Ma N, Xia ZW, Zhang ZG, Nian XX, Li XD, Gong Z et al (2023) Development of an mRNA vaccine against a panel of heterologous H1N1 seasonal influenza viruses using a consensus hemagglutinin sequence. Emerg Microbes Infect 12(1):2202278
Article PubMed PubMed Central Google Scholar
Mifsud EJ, Kuba M, Barr IG (2021) Innate Immune responses to Influenza Virus infections in the Upper Respiratory Tract. Viruses 13(10):2090
Article CAS PubMed PubMed Central Google Scholar
Nandi D, Tahiliani P, Kumar A, Chandu D (2006) The ubiquitin-proteasome system. J Biosci 31(1):137–155
Article CAS PubMed Google Scholar
Patil G, Zhao M, Song K, Hao W, Bouchereau D, Wang L et al (2018) TRIM41-Mediated ubiquitination of nucleoprotein limits influenza a virus infection. J Virol 92(16):e00905–e00918
Article CAS PubMed PubMed Central Google Scholar
Shrestha SS, Swerdlow DL, Borse RH, Prabhu VS, Finelli L, Atkins CY et al (2011) Estimating the burden of 2009 pandemic influenza A (H1N1) in the United States (April 2009-April 2010). Clin Infect Dis 52(Suppl 1):S75–82
Siyu Z, Yujie S, Zhongyue B, Yifan W, Guangjian Z, Fengli Y et al (2024) Gardenin B, a natural inhibitor for USP7: <i > in vitro evaluation and < i > in silico Identification</i >. Lett Drug Des Discov 21(12):2352–2358
Sriwilaijaroen N, Vavricka CJ, Kiyota H, Suzuki Y (2022) Influenza A virus neuraminidase inhibitors. Methods Mol Biol 2556:321–353
Article CAS PubMed Google Scholar
Su W, Lin XT, Zhao S, Zheng XQ, Zhou YQ, Xiao LL et al (2022) Tripartite motif-containing protein 46 accelerates influenza a H7N9 virus infection by promoting K48-linked ubiquitination of TBK1. Virol J 19(1):176
Article CAS PubMed PubMed Central Google Scholar
Sun N, Jiang L, Ye M, Wang Y, Wang G, Wan X et al (2020) TRIM35 mediates protection against influenza infection by activating TRAF3 and degrading viral PB2. Protein Cell 11(12):894–914
Article CAS PubMed PubMed Central Google Scholar
Tang Y, Wang Z, Huo C, Guo X, Yang G, Wang M et al (2018) Antiviral effects of Shuanghuanglian injection powder against influenza a virus H5N1 in vitro and in vivo. Microb Pathog 121:318–324
Uyeki TM, Hui DS, Zambon M, Wentworth DE, Monto AS (2022) Influenza Lancet 400(10353):693–706
Article CAS PubMed Google Scholar
van Gent M, Sparrer KMJ, Gack MU (2018) TRIM proteins and their roles in antiviral host defenses. Annu Rev Virol 5(1):385–405
Article PubMed PubMed Central Google Scholar
van Tol S, Hage A, Giraldo MI, Bharaj P, Rajsbaum R (2017) The TRIMendous role of TRIMs in Virus-Host interactions. Vaccines (Basel) 5(3):23
Vareille M, Kieninger E, Edwards MR, Regamey N (2011) The airway epithelium: soldier in the fight against respiratory viruses. Clin Microbiol Rev 24(1):210–229
Article CAS PubMed PubMed Central Google Scholar
Vunjak M, Versteeg GA (2019) TRIM proteins. Curr Biol 29(2):R42–r44
Article CAS PubMed Google Scholar
Wang X, Xiong J, Zhou D, Zhang S, Wang L, Tian Q et al (2022) TRIM34 modulates influenza virus-activated programmed cell death by targeting Z-DNA-binding protein 1 for K63-linked polyubiquitination. J Biol Chem 298(3):101611
Article CAS PubMed PubMed Central Google Scholar
Wu X, Wang J, Wang S, Wu F, Chen Z, Li C et al (2019) Inhibition of Influenza A Virus replication by TRIM14 via its multifaceted protein-protein Interaction with NP. Front Microbiol 10:344
Article PubMed PubMed Central Google Scholar
Yamayoshi S, Kawaoka Y (2019) Current and future influenza vaccines. Nat Med 25(2):212–220
Comments (0)