Causation and prevention in epidemiology: assumptions, derivations, and measures old and new

Abstract

Epidemiologic measures quantifying the causative or the preventive effect of a particular agent with respect to a given disease are frequently used, but the set of assumptions on which they rest, and the consequences of these assumptions, are not widely understood. We present a rigorous derivation of these measures from the sufficient-causes model of disease occurrence and from the definition of causation as the bringing forward of the occurrence time of an event. This exercise brings out the fact that an understanding of the assumptions underpinning all measures of effect, and of the extent to which they may or may not be met, is necessary to their prudent interpretation. We also introduce a new measure, discarding 1) the sufficient-causes model and 2) the assumption that the agent can only be either causative or preventive, relative to a given disease, but not both. Some may consider this more acceptable than having to decide, on slim or no evidence, that the agent has only one kind of effect on the disease. In any case, I submit that epidemiology should eventually discard the concept of causation, as has been done in some other basic sciences, and replace it with the adequate modeling of disease-producing processes, in individuals and populations.

Competing Interest Statement

The authors have declared no competing interest.

Funding Statement

This study did not receive any funding.

Author Declarations

I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.

Yes

I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.

Yes

I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).

Yes

I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.

Yes

Data Availability

All data used are hypothetical and included in the article.

Comments (0)

No login
gif