Cannabigerol Mitigates Haloperidol-Induced Vacuous Chewing Movements in Mice

American Psychiatric Association (2013) Diagnostic and statistical manual of mental disorders (5th ed.). American Psychiatric Publishing. https://doi.org/10.1176/appi.books.9780890425596

Andreassen OA, Ferrante RJ, Aamo TO, Beal MF, Jørgensen HA (2003) Oral dyskinesias and histopathological alterations in substantia nigra after long-term haloperidol treatment of old rats. Neuroscience 122(3):717–725. https://doi.org/10.1016/j.neuroscience.2003.08.058

Article  CAS  PubMed  Google Scholar 

Bashir HH, Jankovic J (2020) Treatment of Tardive Dyskinesia. Neurol Clin 38(2):379–396. https://doi.org/10.1016/j.ncl.2020.01.004

Article  PubMed  Google Scholar 

Bishnoi M, Chopra K, Kulkarni SK (2008) Differential striatal levels of TNF-alpha, NFkappaB p65 subunit and dopamine with chronic typical and atypical neuroleptic treatment: role in orofacial dyskinesia. Prog Neuropsychopharmacol Biol Psychiatry 32(6):1473–1478. https://doi.org/10.1016/j.pnpbp.2008.05.003

Article  CAS  PubMed  Google Scholar 

Blanchet PJ, Parent MT, Rompré PH, Lévesque D (2012) Relevance of animal models to human tardive dyskinesia. Behav Brain Funct 8:12. https://doi.org/10.1186/1744-9081-8-12

Article  PubMed  PubMed Central  Google Scholar 

Bloomfield PS, Bonsall D, Wells L, Dormann D, Howes O, De Paola V (2018) The effects of haloperidol on microglial morphology and translocator protein levels: An in vivo study in rats using an automated cell evaluation pipeline. J Psychopharmacol 32(11):1264–1272. https://doi.org/10.1177/0269881118788830

Article  CAS  PubMed  Google Scholar 

Bortolanza M, do Nascimento GC, Raisman-Vozari R, Del-Bel E (2021) Doxycycline and its derivative, COL-3, decrease dyskinesia induced by l-DOPA in hemiparkinsonian rats. Br J Pharmacol 178(13):2595–2616. https://doi.org/10.1111/bph.15439

Article  CAS  PubMed  Google Scholar 

Bücheler MM, Hadamek K, Hein L (2002) Two alpha (2)-adrenergic receptor subtypes, alpha(2A) and alpha(2 C), inhibit transmitter release in the brain of gene-targeted mice. Neuroscience 109(4):819–826. https://doi.org/10.1016/s0306-4522(01)00531-0

Article  PubMed  Google Scholar 

Carbon M, Kane JM, Leucht S, Correll CU (2018) Tardive dyskinesia risk with first- and second-generation antipsychotics in comparative randomized controlled trials: a meta-analysis. World Psychiatry 17(3):330–340. https://doi.org/10.1002/wps.20579

Article  PubMed  PubMed Central  Google Scholar 

Caroff SN (2020) Recent Advances in the Pharmacology of Tardive Dyskinesia. Clin Psychopharmacol Neurosci 18(4):493–506. https://doi.org/10.9758/cpn.2020.18.4.493

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cascio MG, Gauson LA, Stevenson LA, Ross RA, Pertwee RG (2010) Evidence that the plant cannabinoid cannabigerol is a highly potent alpha2-adrenoceptor agonist and moderately potent 5HT1A receptor antagonist. Br J Pharmacol 159(1):129–141. https://doi.org/10.1111/j.1476-5381.2009.00515.x

Article  CAS  PubMed  Google Scholar 

Chuhma N, Mingote S, Kalmbach A, Yetnikoff L, Rayport S (2017) Heterogeneity in Dopamine Neuron Synaptic Actions Across the Striatum and Its Relevance for Schizophrenia. Biol Psychiatry 81(1):43–51. https://doi.org/10.1016/j.biopsych.2016.07.002

Article  CAS  PubMed  Google Scholar 

Cuttler C, Stueber A, Cooper ZD, Russo E (2024) Acute effects of cannabigerol on anxiety, stress, and mood: a double-blind, placebo-controlled, crossover, field trial. Sci Rep 14(1):16163. https://doi.org/10.1038/s41598-024-66879-0

Article  CAS  PubMed  PubMed Central  Google Scholar 

Datta S, Jamwal S, Deshmukh R, Kumar P (2016) Beneficial effects of lycopene against haloperidol induced orofacial dyskinesia in rats: Possible neurotransmitters and neuroinflammation modulation. Eur J Pharmacol 771:229–235. https://doi.org/10.1016/j.ejphar.2015.12.032

Article  CAS  PubMed  Google Scholar 

De Petrocellis L, Ligresti A, Moriello AS, Allarà M, Bisogno T, Petrosino S, Stott CG, Marzo D, V (2011) Effects of cannabinoids and cannabinoid-enriched Cannabis extracts on TRP channels and endocannabinoid metabolic enzymes. Br J Pharmacol 163(7):1479–1494. https://doi.org/10.1111/j.1476-5381.2010.01166.x

Article  CAS  PubMed  PubMed Central  Google Scholar 

DeLong MR (1990) Primate models of movement disorders of basal ganglia origin. Trends Neurosci 13(7):281–285. https://doi.org/10.1016/0166-2236(90)90110-v

Article  CAS  PubMed  Google Scholar 

di Giacomo V, Chiavaroli A, Recinella L, Orlando G, Cataldi A, Rapino M, Ferrante C (2020) Antioxidant and Neuroprotective Effects Induced by Cannabidiol and Cannabigerol in Rat CTX-TNA2 Astrocytes and Isolated Cortexes. Int J Mol Sci 21(10). https://doi.org/10.3390/ijms21103575

Diz-Chaves Y, Pernía O, Carrero P, Garcia-Segura LM (2012) Prenatal stress causes alterations in the morphology of microglia and the inflammatory response of the hippocampus of adult female mice. J Neuroinflammation 9:71. https://doi.org/10.1186/1742-2094-9-71

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dos Santos Pereira M, do Nascimento GC, Bortolanza M, Michel PP, Raisman-Vozari R, Del Bel E (2022) Doxycycline attenuates l-DOPA-induced dyskinesia through an anti-inflammatory effect in a hemiparkinsonian mouse model. Front Pharmacol 13:1045465. https://doi.org/10.3389/fphar.2022.1045465

Article  CAS  PubMed  PubMed Central  Google Scholar 

Du H, Chen X, Zhang J, Chen C (2011) Inhibition of COX-2 expression by endocannabinoid 2-arachidonoylglycerol is mediated via PPAR-γ. Br J Pharmacol 163(7):1533–1549. https://doi.org/10.1111/j.1476-5381.2011.01444.x

Article  CAS  PubMed  PubMed Central  Google Scholar 

Echeverry C, Prunell G, Narbondo C, de Medina VS, Nadal X, Reyes-Parada M, Scorza C (2021) A Comparative In Vitro Study of the Neuroprotective Effect Induced by Cannabidiol, Cannabigerol, and Their Respective Acid Forms: Relevance of the 5-HT. Neurotox Res 39(2):335–348. https://doi.org/10.1007/s12640-020-00277-y

Article  CAS  PubMed  Google Scholar 

Friedman JH (2014) Viewpoint: challenges in our understanding of neuroleptic induced parkinsonism. Parkinsonism Relat Disord 20(12):1325–1328. https://doi.org/10.1016/j.parkreldis.2014.09.030

Article  PubMed  Google Scholar 

Gerfen CR (1992) The neostriatal mosaic: multiple levels of compartmental organization. J Neural Transm Suppl 36:43–59. https://doi.org/10.1007/978-3-7091-9211-5_4

Article  CAS  PubMed  Google Scholar 

Grande C, Zhu H, Martin AB, Lee M, Ortiz O, Hiroi N, Moratalla R (2004) Chronic treatment with atypical neuroleptics induces striosomal FosB/DeltaFosB expression in rats. Biol Psychiatry 55(5):457–463. https://doi.org/10.1016/j.biopsych.2003.08.008

Article  CAS  PubMed  Google Scholar 

Hernandez G, Mahmoudi S, Cyr M, Diaz J, Blanchet PJ, Lévesque D (2019) Tardive dyskinesia is associated with altered putamen Akt/GSK-3β signaling in nonhuman primates. Mov Disord 34(5):717–726. https://doi.org/10.1002/mds.27630

Article  CAS  PubMed  Google Scholar 

Khorassani F, Luther K, Talreja O (2020) Valbenazine and deutetrabenazine: Vesicular monoamine transporter 2 inhibitors for tardive dyskinesia. Am J Health Syst Pharm 77(3):167–174. https://doi.org/10.1093/ajhp/zxz299

Article  PubMed  Google Scholar 

Kimura M, Oda Y, Kimura H, Nangaku M, Hirose Y, Niitsu T, Iyo M (2021) Reduction of dopamine and glycogen synthase kinase-3 signaling in rat striatum after continuous administration of haloperidol. Pharmacol Biochem Behav 202:173114. https://doi.org/10.1016/j.pbb.2021.173114

Article  CAS  PubMed  Google Scholar 

Maredia M, Hamilton J, Thanos PK (2021) A high-fat diet, but not haloperidol or olanzapine administration, increases activated microglial expression in the rat brain. Neurosci Lett 757:135976. https://doi.org/10.1016/j.neulet.2021.135976

Article  CAS  PubMed  Google Scholar 

Margolese HC, Chouinard G, Kolivakis TT, Beauclair L, Miller R (2005) Tardive dyskinesia in the era of typical and atypical antipsychotics. Part 1: pathophysiology and mechanisms of induction. Can J Psychiatry 50(9):541–547.

Comments (0)

No login
gif