Ajoolabady A, Wang S, Kroemer G et al (2021) Targeting autophagy in ischemic stroke: from molecular mechanisms to clinical therapeutics. Pharmacol Ther 225:107848. https://doi.org/10.1016/j.pharmthera.2021.107848
Article CAS PubMed PubMed Central Google Scholar
Alborzinia H, Chen Z, Yildiz U et al (2023) LRP8-mediated selenocysteine uptake is a targetable vulnerability in MYCN-amplified neuroblastoma. EMBO Mol Med 15(8):e18014. https://doi.org/10.15252/emmm.202318014
Article CAS PubMed PubMed Central Google Scholar
Alim I, Caulfield JT, Chen Y et al (2019) Selenium drives a transcriptional adaptive program to block ferroptosis and treat stroke. Cell 177(5):1262-1279 e25. https://doi.org/10.1016/j.cell.2019.03.032
Article CAS PubMed Google Scholar
Bannai S (1986) Exchange of cystine and glutamate across plasma membrane of human fibroblasts. J Biol Chem 261(5):2256–2263
Article CAS PubMed Google Scholar
Bu ZQ, Yu HY, Wang J et al (2021) Emerging role of ferroptosis in the pathogenesis of ischemic stroke: a new therapeutic target? ASN Neuro 13:17590914211037504. https://doi.org/10.1177/17590914211037505
Article CAS PubMed PubMed Central Google Scholar
Calabrese V, Cornelius C, Dinkova-Kostova AT et al (2010) Cellular stress responses, the hormesis paradigm, and vitagenes: novel targets for therapeutic intervention in neurodegenerative disorders. Antioxid Redox Signal 13(11):1763–1811. https://doi.org/10.1089/ars.2009.3074
Article CAS PubMed PubMed Central Google Scholar
Calabrese V, Giordano J, Signorile A et al (2016) Major pathogenic mechanisms in vascular dementia: Roles of cellular stress response and hormesis in neuroprotection. J Neurosci Res 94(12):1588–1603. https://doi.org/10.1002/jnr.23925
Article CAS PubMed Google Scholar
Calabrese V, Mancuso C, Calvani M et al (2007) Nitric oxide in the central nervous system: neuroprotection versus neurotoxicity. Nat Rev Neurosci 8(10):766–775. https://doi.org/10.1038/nrn2214
Article CAS PubMed Google Scholar
Chen D, Chu B, Yang X et al (2021) iPLA2beta-mediated lipid detoxification controls p53-driven ferroptosis independent of GPX4. Nat Commun 12(1):3644. https://doi.org/10.1038/s41467-021-23902-6
Article ADS CAS PubMed PubMed Central Google Scholar
Chen Y, Fang ZM, Yi X et al (2023a) The interaction between ferroptosis and inflammatory signaling pathways. Cell Death Dis 14(3):205. https://doi.org/10.1038/s41419-023-05716-0
Article ADS CAS PubMed PubMed Central Google Scholar
Chen Y, He W, Wei H et al (2023b) Srs11-92, a ferrostatin-1 analog, improves oxidative stress and neuroinflammation via Nrf2 signal following cerebral ischemia/reperfusion injury. CNS Neurosci Ther 29(6):1667–1677. https://doi.org/10.1111/cns.14130
Article ADS CAS PubMed PubMed Central Google Scholar
Chen H, Wang C, Liu Z et al (2022) Ferroptosis and Its multifaceted role in cancer: mechanisms and therapeutic approach. Antioxidants (Basel). https://doi.org/10.3390/antiox11081504
Article PubMed PubMed Central Google Scholar
Cheng G, Zhao W, Xin Y et al (2021) Effects of ML351 and tissue plasminogen activator combination therapy in a rat model of focal embolic stroke. J Neurochem 157(3):586–598. https://doi.org/10.1111/jnc.15308
Article CAS PubMed Google Scholar
Concetta Scuto M, Mancuso C, Tomasello B et al (2019) Curcumin, hormesis and the nervous system. Nutrients. https://doi.org/10.3390/nu11102417
Cornelius C, Perrotta R, Graziano A et al (2013) Stress responses, vitagenes and hormesis as critical determinants in aging and longevity: Mitochondria as a “chi.” Immun Ageing 10(1):15. https://doi.org/10.1186/1742-4933-10-15
Article CAS PubMed PubMed Central Google Scholar
Cosentino A, Agafonova A, Modafferi S et al (2023) Blood-labyrinth barrier in health and diseases: effect of hormetic nutrients. Antioxid Redox Signal. https://doi.org/10.1089/ars.2023.0251
Cui Y, Zhang Y, Zhao X et al (2021) ACSL4 exacerbates ischemic stroke by promoting ferroptosis-induced brain injury and neuroinflammation. Brain Behav Immun 93:312–321. https://doi.org/10.1016/j.bbi.2021.01.003
Article CAS PubMed Google Scholar
Deng X, Chu W, Zhang H et al (2023) Nrf2 and ferroptosis: a new research direction for ischemic stroke. Cell Mol Neurobiol 43(8):3885–3896. https://doi.org/10.1007/s10571-023-01411-y
Article CAS PubMed Google Scholar
Dixon SJ (2017) Ferroptosis: bug or feature? Immunol Rev 277(1):150–157. https://doi.org/10.1111/imr.12533
Article CAS PubMed Google Scholar
Dixon SJ, Lemberg KM, Lamprecht MR et al (2012) Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149(5):1060–1072. https://doi.org/10.1016/j.cell.2012.03.042
Article CAS PubMed PubMed Central Google Scholar
Dixon SJ, Stockwell BR (2014) The role of iron and reactive oxygen species in cell death. Nat Chem Biol 10(1):9–17. https://doi.org/10.1038/nchembio.1416
Article CAS PubMed Google Scholar
Dodson M, Castro-Portuguez R, Zhang DD (2019) NRF2 plays a critical role in mitigating lipid peroxidation and ferroptosis. Redox Biol 23:101107. https://doi.org/10.1016/j.redox.2019.101107
Article CAS PubMed PubMed Central Google Scholar
Doll S, Freitas FP, Shah R et al (2019) FSP1 is a glutathione-independent ferroptosis suppressor. Nature 575(7784):693–698. https://doi.org/10.1038/s41586-019-1707-0
Article ADS CAS PubMed Google Scholar
Doll S, Proneth B, Tyurina YY et al (2017) ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat Chem Biol 13(1):91–98. https://doi.org/10.1038/nchembio.2239
Article CAS PubMed Google Scholar
Dolma S, Lessnick SL, Hahn WC et al (2003) Identification of genotype-selective antitumor agents using synthetic lethal chemical screening in engineered human tumor cells. Cancer Cell 3(3):285–296. https://doi.org/10.1016/s1535-6108(03)00050-3
Article CAS PubMed Google Scholar
Domercq M, Szczupak B, Gejo J et al (2016) PET imaging with [(18)F]FSPG evidences the role of system xc(-) on brain inflammation following cerebral ischemia in rats. Theranostics 6(11):1753–1767. https://doi.org/10.7150/thno.15616
Article CAS PubMed PubMed Central Google Scholar
Fan GB, Li Y, Xu GS et al (2023) Propofol inhibits ferroptotic cell death through the Nrf2/Gpx4 signaling pathway in the mouse model of cerebral ischemia-reperfusion injury. Neurochem Res 48(3):956–966. https://doi.org/10.1007/s11064-022-03822-7
Article CAS PubMed Google Scholar
Fang Y, Chen X, Tan Q et al (2021) Inhibiting ferroptosis through disrupting the NCOA4-FTH1 interaction: a new mechanism of action. ACS Cent Sci 7(6):980–989. https://doi.org/10.1021/acscentsci.0c01592
Article CAS PubMed PubMed Central Google Scholar
Fang Y, Tan Q, Zhou H et al (2022) Discovery of novel diphenylbutene derivative ferroptosis inhibitors as neuroprotective agents. Eur J Med Chem 231:114151. https://doi.org/10.1016/j.ejmech.2022.114151
Article CAS PubMed Google Scholar
Fu C, Wu Y, Liu S et al (2022) Rehmannioside A improves cognitive impairment and alleviates ferroptosis via activating PI3K/AKT/Nrf2 and SLC7A11/GPX4 signaling pathway after ischemia. J Ethnopharmacol 289:115021. https://doi.org/10.1016/j.jep.2022.115021
Article CAS PubMed Google Scholar
Gao M, Monian P, Quadri N et al (2015) Glutaminolysis and transferrin regulate ferroptosis. Mol Cell 59(2):298–308. https://doi.org/10.1016/j.molcel.2015.06.011
Article CAS PubMed PubMed Central Google Scholar
Gao J, Ma C, Xia D et al (2023) Icariside II preconditioning evokes robust neuroprotection against ischaemic stroke, by targeting Nrf2 and the OXPHOS/NF-kappaB/ferroptosis pathway. Br J Pharmacol 180(3):308–329. https://doi.org/10.1111/bph.15961
Article CAS PubMed Google Scholar
Gao M, Yi J, Zhu J et al (2019) Role of mitochondria in ferroptosis. Mol Cell 73(2):354-363 e3. https://doi.org/10.1016/j.molcel.2018.10.042
Comments (0)