Silvestri, R., Nicolì, V., Gangadharannambiar, P., Crea, F., & Bootman, M. D. (2023). Calcium signalling pathways in prostate cancer initiation and progression. Nature Reviews Urology. https://doi.org/10.1038/s41585-023-00738-x
Rebello, R. J., Pearson, R. B., Hannan, R. D., & Furic, L. (2017). Therapeutic approaches targeting MYC-driven prostate cancer. Genes, 8, 71.
Article PubMed PubMed Central Google Scholar
Taichman, R. S., Loberg, R. D., Mehra, R., & Pienta, K. J. (2007). The evolving biology and treatment of prostate cancer. The Journal of clinical investigation, 117, 2351–2361. https://doi.org/10.1172/jci31791
Article CAS PubMed PubMed Central Google Scholar
Crawford, E. D., Heidenreich, A., Lawrentschuk, N., Tombal, B., Pompeo, A. C. L., Mendoza-Valdes, A., Miller, K., Debruyne, F. M. J., & Klotz, L. (2019). Androgen-targeted therapy in men with prostate cancer: Evolving practice and future considerations. Prostate cancer and prostatic diseases, 22, 24–38. https://doi.org/10.1038/s41391-018-0079-0
Ehsani, M., David, F. O., Baniahmad, A. (2021). Androgen receptor-dependent mechanisms mediating drug resistance in prostate cancer. Cancers. 13. https://doi.org/10.3390/cancers13071534
Hoang, D. T., Iczkowski, K. A., Kilari, D., See, W., & Nevalainen, M. T. (2017). Androgen receptor-dependent and -independent mechanisms driving prostate cancer progression: Opportunities for therapeutic targeting from multiple angles. Oncotarget, 8, 3724–3745. https://doi.org/10.18632/oncotarget.12554
Merkens, L., Sailer, V., Lessel, D., Janzen, E., Greimeier, S., Kirfel, J., Perner, S., Pantel, K., Werner, S., & von Amsberg, G. (2022). Aggressive variants of prostate cancer: underlying mechanisms of neuroendocrine transdifferentiation. Journal of experimental & clinical cancer research : CR, 41, 46. https://doi.org/10.1186/s13046-022-02255-y
Article CAS PubMed Central Google Scholar
Montironi, R., Cimadamore, A., Lopez-Beltran, A., Scarpelli, M., Aurilio, G., Santoni, M., Massari, F., Cheng, L. (2020). Morphologic, molecular and clinical features of aggressive variant prostate cancer. Cells 9. https://doi.org/10.3390/cells9051073
Coleman, W. B. (2018). Chapter 25 — Molecular pathogenesis of prostate cancer. In Molecular pathology (Second Edition), Coleman, W.B., Tsongalis, G.J., Eds.; Academic Press. pp. 555–568.
Avkshtol, V., Ruth, K. J., Ross, E. A., Hallman, M. A., Greenberg, R. E., Price, R. A., Jr., Leachman, B., Uzzo, R. G., Ma, C., Chen, D., et al. (2020). Ten-year update of a randomized, prospective trial of conventional fractionated versus moderate hypofractionated radiation therapy for localized prostate cancer. Journal of clinical oncology : Official journal of the American Society of Clinical Oncology, 38, 1676–1684. https://doi.org/10.1200/jco.19.01485
Hagiwara, M., Fushimi, A., Yamashita, N., Bhattacharya, A., Rajabi, H., Long, M. D., Yasumizu, Y., Oya, M., Liu, S., & Kufe, D. (2021). MUC1-C activates the PBAF chromatin remodeling complex in integrating redox balance with progression of human prostate cancer stem cells. Oncogene, 40, 4930–4940. https://doi.org/10.1038/s41388-021-01899-y
Article CAS PubMed PubMed Central Google Scholar
Hagiwara, M., Fushimi, A., Bhattacharya, A., Yamashita, N., Morimoto, Y., Oya, M., Withers, H. G., Hu, Q., Liu, T., Liu, S., et al. (2022). MUC1-C integrates type II interferon and chromatin remodeling pathways in immunosuppression of prostate cancer. Oncoimmunology, 11, 2029298. https://doi.org/10.1080/2162402x.2022.2029298
Article CAS PubMed PubMed Central Google Scholar
Yang, Y., Liu, L., Li, M., Cheng, X., Fang, M., Zeng, Q., & Xu, Y. (2019). The chromatin remodeling protein BRG1 links ELOVL3 trans-activation to prostate cancer metastasis. Biochimica et biophysica acta. Gene Regulatory Mechanisms, 1862, 834–845. https://doi.org/10.1016/j.bbagrm.2019.05.005
Article CAS PubMed Google Scholar
Zhao, D., Zhang, M., Huang, S., Liu, Q., Zhu, S., Li, Y., Jiang, W., Kiss, D. L., Cao, Q., Zhang, L., et al. (2022). CHD6 promotes broad nucleosome eviction for transcriptional activation in prostate cancer cells. Nucleic Acids Research, 50, 12186–12201. https://doi.org/10.1093/nar/gkac1090
Article CAS PubMed PubMed Central Google Scholar
Ding, Y., Li, N., Dong, B., Guo, W., Wei, H., Chen, Q., Yuan, H., Han, Y., Chang, H., Kan, S., et al. (2019). Chromatin remodeling ATPase BRG1 and PTEN are synthetic lethal in prostate cancer. The Journal of clinical investigation, 129, 759–773. https://doi.org/10.1172/jci123557
Article PubMed PubMed Central Google Scholar
Rajwa, P., Quhal, F., Pradere, B., Gandaglia, G., Ploussard, G., Leapman, M. S., Gore, J. L., Paradysz, A., Tilki, D., Merseburger, A. S., et al. (2023). Prostate cancer risk, screening and management in patients with germline BRCA1/2 mutations. Nature Reviews Urology, 20, 205–216. https://doi.org/10.1038/s41585-022-00680-4
Article CAS PubMed Google Scholar
Loeb, S., & Giri, V. N. (2021). Clinical implications of germline testing in newly diagnosed prostate cancer. European urology oncology, 4, 1–9. https://doi.org/10.1016/j.euo.2020.11.011
Oh, M., Alkhushaym, N., Fallatah, S., Althagafi, A., Aljadeed, R., Alsowaida, Y., Jeter, J., Martin, J. R., Babiker, H. M., McBride, A., et al. (2019). The association of BRCA1 and BRCA2 mutations with prostate cancer risk, frequency, and mortality: A meta-analysis. The Prostate, 79, 880–895. https://doi.org/10.1002/pros.23795
Article CAS PubMed Google Scholar
Pritchard, C. C., Mateo, J., Walsh, M. F., De Sarkar, N., Abida, W., Beltran, H., Garofalo, A., Gulati, R., Carreira, S., Eeles, R., et al. (2016). Inherited DNA-repair gene mutations in men with metastatic prostate cancer. The New England Journal of Medicine, 375, 443–453. https://doi.org/10.1056/NEJMoa1603144
Article CAS PubMed PubMed Central Google Scholar
Shore, N., Oliver, L., Shui, I., Gayle, A., Wong, O. Y., Kim, J., Payne, S., Amin, S., & Ghate, S. (2021). Systematic literature review of the epidemiology of advanced prostate cancer and associated homologous recombination repair gene alterations. The Journal of urology, 205, 977–986. https://doi.org/10.1097/ju.0000000000001570
Wang, Z., Wang, T., Hong, D., Dong, B., Wang, Y., Huang, H., Zhang, W., Lian, B., Ji, B., Shi, H., et al. (2022). Single-cell transcriptional regulation and genetic evolution of neuroendocrine prostate cancer. iScience, 25, 104576. https://doi.org/10.1016/j.isci.2022.104576
Article ADS CAS PubMed PubMed Central Google Scholar
Lv, S., Wu, Z., Luo, M., Zhang, Y., Zhang, J., Pascal, L. E., Wang, Z., & Wei, Q. (2022). Integrated analysis reveals FOXA1 and Ku70/Ku80 as targets of ivermectin in prostate cancer. Cell Death & Disease, 13, 754. https://doi.org/10.1038/s41419-022-05182-0
Tang, D. G. (2022). Understanding and targeting prostate cancer cell heterogeneity and plasticity. Seminars in Cancer Biology, 82, 68–93. https://doi.org/10.1016/j.semcancer.2021.11.001
Article CAS PubMed Google Scholar
Cyrta, J., Prandi, D., Arora, A., Hovelson, D. H., Sboner, A., Rodriguez, A., Fedrizzi, T., Beltran, H., Robinson, D. R., Gopalan, A., et al. (2022). Comparative genomics of primary prostate cancer and paired metastases: Insights from 12 molecular case studies. The Journal of pathology, 257, 274–284. https://doi.org/10.1002/path.5887
Article CAS PubMed Google Scholar
Sun, G., Ma, S., Zheng, Z., Wang, X., Chen, S., Chang, T., Liang, Z., Jiang, Y., Xu, S., & Liu, R. (2022). Multi-omics analysis of expression and prognostic value of NSUN members in prostate cancer. Frontiers in Oncology, 12, 965571. https://doi.org/10.3389/fonc.2022.965571
Article CAS PubMed PubMed Central Google Scholar
Jia, D., Zhou, Z., Kwon, O. J., Zhang, L., Wei, X., Zhang, Y., Yi, M., Roudier, M. P., Regier, M. C., Dumpit, R., et al. (2022). Stromal FOXF2 suppresses prostate cancer progression and metastasis by enhancing antitumor immunity. Nature Communications, 13, 6828. https://doi.org/10.1038/s41467-022-34665-z
Article ADS CAS PubMed PubMed Central Google Scholar
Chang, M., He, Y., Liu, C., Lin, R., Huang, X., Liang, D., Zhang, J., & Lu, Y. (2022). Downregulation of SEPTIN5 inhibits prostate cancer progression by increasing CD8(+) T cell infiltration. International Journal of Biological Sciences, 18, 6035–6051. https://doi.org/10.7150/ijbs.76573
Article CAS PubMed PubMed Central Google Scholar
Ding, L., Wang, R., Zheng, Q., Shen, D., Wang, H., Lu, Z., Luo, W., Xie, H., Ren, L., Jiang, M., et al. (2022). circPDE5A regulates prostate cancer metastasis via controlling WTAP-dependent N6-methyladenisine methylation of EIF3C mRNA. Journal of Experimental & Clinical Cancer Research : CR, 41, 187. https://doi.org/10.1186/s13046-022-02391-5
Article CAS PubMed Central Google Scholar
Li, Z., Li, B., Yu, H., Wang, P., Wang, W., Hou, P., Li, M., Chu, S., Zheng, J., Mao, L., et al. (2022). DNMT1-mediated epigenetic silencing of TRAF6 promotes prostate cancer tumorigenesis and metastasis by enhancing EZH2 stability. Oncogene, 41, 3991–4002. https://doi.org/10.1038/s41388-022-02404-9
Article CAS PubMed Google Scholar
Vasan, N., Baselga, J., & Hyman, D. M. (2019). A view on drug resistance in cancer. Nature, 575, 299–309. https://doi.org/10.1038/s41586-019-1730-1
Article ADS CAS PubMed PubMed Central Google Scholar
Goldie, J. H., & Coldman, A. J. (1984). The genetic origin of drug resistance in neoplasms: Implications for systemic therapy. Cancer Research, 44, 3643–3653.
Fisher, B., Slack, N. H., & Bross, I. D. (1969). Cancer of the breast: Size of neoplasm and prognosis. Cancer, 24, 1071–1080. https://doi.org/10.1002/1097-0142(196911)24:5%3c1071::aid-cncr2820240533%3e3.0.co;2-h
Article CAS PubMed Google Scholar
Skipper, H. E.,
Comments (0)