Sangro, B., Chan, S. L., Meyer, T., Reig, M., El-Khoueiry, A., & Galle, P. R. (2020). Diagnosis and management of toxicities of immune checkpoint inhibitors in hepatocellular carcinoma. Journal of hepatology, 72(2), 320–341. https://doi.org/10.1016/j.jhep.2019.10.021
Article PubMed PubMed Central Google Scholar
Alsaab, H. O., Sau, S., Alzhrani, R., Tatiparti, K., Bhise, K., Kashaw, S. K., & Iyer, A. K. (2017). PD-1 and PD-L1 checkpoint signaling inhibition for cancer immunotherapy: Mechanism, combinations, and clinical outcome. Frontiers in Pharmacology, 8, 561. https://doi.org/10.3389/fphar.2017.00561
Article PubMed PubMed Central Google Scholar
Okusaka, T., & Ikeda, M. (2018). Immunotherapy for hepatocellular carcinoma: Current status and future perspectives. ESMO open, 3(Suppl 1), e000455. https://doi.org/10.1136/esmoopen-2018-000455
Article PubMed PubMed Central Google Scholar
Jabbarzadeh Kaboli, P., Shabani, S., Sharma, S., Partovi Nasr, M., Yamaguchi, H., & Hung, M.-C. (2022). Shedding light on triple-negative breast cancer with Trop2-targeted antibody-drug conjugates. American Journal of Cancer Research, 12(4), 1671–1685.
PubMed PubMed Central Google Scholar
Patil, N. S., Nabet, B. Y., Müller, S., Koeppen, H., Zou, W., Giltnane, J., …Shames, D. S. (2022). Intratumoral plasma cells predict outcomes to PD-L1 blockade in non-small cell lung cancer. Cancer Cell, 40(3), 289−300.e4. https://doi.org/10.1016/j.ccell.2022.02.002
Tang, Q., Chen, Y., Li, X., Long, S., Shi, Y., Yu, Y., …Wang, S. (2022). The role of PD-1/PD-L1 and application of immune-checkpoint inhibitors in human cancers. Frontiers in Immunology, 13, 964442. https://doi.org/10.3389/fimmu.2022.964442
Jiang, H., Ni, H., Zhang, P., Guo, X., Wu, M., Shen, H., …Liu, J. (2021). PD-L1/LAG-3 bispecific antibody enhances tumor-specific immunity. Oncoimmunology, 10(1), 1943180. https://doi.org/10.1080/2162402X.2021.1943180
Sanborn, R. E., Pishvaian, M. J., Callahan, M. K., Weise, A., Sikic, B. I., Rahma, O., …Keler, T. (2022). Safety, tolerability and efficacy of agonist anti-CD27 antibody (varlilumab) administered in combination with anti-PD-1 (nivolumab) in advanced solid tumors. Journal for Immunotherapy of Cancer, 10(8). https://doi.org/10.1136/jitc-2022-005147
Cercek, A., Lumish, M., Sinopoli, J., Weiss, J., Shia, J., Lamendola-Essel, M., …Diaz, L. A. J. (2022). PD-1 blockade in mismatch repair-deficient, locally advanced rectal cancer. The New England Journal of Medicine, 386(25), 2363–2376. https://doi.org/10.1056/NEJMoa2201445
Huang, Q., Zheng, Y., Gao, Z., Yuan, L., Sun, Y., & Chen, H. (2021). Comparative efficacy and safety of PD-1/PD-L1 inhibitors for patients with solid tumors: A systematic review and Bayesian network meta-analysis. Journal of Cancer, 12(4), 1133–1143. https://doi.org/10.7150/jca.49325
Article PubMed PubMed Central Google Scholar
Herbst, R. S., Soria, J.-C., Kowanetz, M., Fine, G. D., Hamid, O., Gordon, M. S., …Hodi, F. S. (2014). Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature, 515(7528), 563–567. https://doi.org/10.1038/nature14011
Weinstock, C., Khozin, S., Suzman, D., Zhang, L., Tang, S., Wahby, S., …Pazdur, R. (2017). U.S. food and drug administration approval summary: Atezolizumab for metastatic non-small cell lung cancer. Clinical Cancer Research : An Official Journal of the American Association for Cancer Research, 23(16), 4534–4539. https://doi.org/10.1158/1078-0432.CCR-17-0540
Ribeiro, R., Carvalho, M. J., Goncalves, J., & Moreira, J. N. (2022). Immunotherapy in triple-negative breast cancer: Insights into tumor immune landscape and therapeutic opportunities. Frontiers in Molecular Biosciences, 9, 903065. https://doi.org/10.3389/fmolb.2022.903065
Article PubMed PubMed Central Google Scholar
Emens, L. A., Adams, S., Cimino-Mathews, A., Disis, M. L., Gatti-Mays, M. E., Ho, A. Y., …Litton, J. K. (2021). Society for Immunotherapy of Cancer (SITC) clinical practice guideline on immunotherapy for the treatment of breast cancer. Journal for Immunotherapy of Cancer, 9(8). https://doi.org/10.1136/jitc-2021-002597
Faivre, S., Rimassa, L., & Finn, R. S. (2020). Molecular therapies for HCC: Looking outside the box. Journal of Hepatology, 72(2), 342–352. https://doi.org/10.1016/j.jhep.2019.09.010
Jin, H., Qin, S., He, J., Xiao, J., Li, Q., Mao, Y., & Zhao, L. (2022). New insights into checkpoint inhibitor immunotherapy and its combined therapies in hepatocellular carcinoma: From mechanisms to clinical trials. International Journal of Biological Sciences, 18(7), 2775–2794. https://doi.org/10.7150/ijbs.70691
Article PubMed PubMed Central Google Scholar
Feng, D., Hui, X., Shi-Chun, L., Yan-Hua, B., Li, C., Xiao-Hui, L., & Jie-Yu, Y. (2017). Initial experience of anti-PD1 therapy with nivolumab in advanced hepatocellular carcinoma. Oncotarget, 8(57), 96649–96655. https://doi.org/10.18632/oncotarget.20029
Article PubMed PubMed Central Google Scholar
El-Khoueiry, A. B., Sangro, B., Yau, T., Crocenzi, T. S., Kudo, M., Hsu, C., …Melero, I. (2017). Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): an open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet (London, England), 389(10088), 2492–2502. https://doi.org/10.1016/S0140-6736(17)31046-2
Bally, A. P. R., Austin, J. W., & Boss, J. M. (2016). Genetic and epigenetic regulation of PD-1 expression. Journal of immunology (Baltimore, Md. : 1950), 196(6), 2431–2437. https://doi.org/10.4049/jimmunol.1502643
Liu, W., Jin, H., Chen, T., Zhang, G., Lai, S., & Liu, G. (2020). Investigating the role of the N-Terminal Loop of PD-1 in binding process between PD-1 and nivolumab via molecular dynamics simulation. Frontiers in Molecular Biosciences, 7, 574759. https://doi.org/10.3389/fmolb.2020.574759
Article PubMed PubMed Central Google Scholar
Zak, K. M., Kitel, R., Przetocka, S., Golik, P., Guzik, K., Musielak, B., …Holak, T. A. (2015). Structure of the complex of human programmed death 1, PD-1, and Its Ligand PD-L1. Structure (London, England : 1993), 23(12), 2341–2348. https://doi.org/10.1016/j.str.2015.09.010
Chen, D., Tan, S., Zhang, H., Wang, H., He, W., Shi, R., …Gao, G. F. (2019). The FG loop of PD-1 serves as a “Hotspot” for therapeutic monoclonal antibodies in tumor immune checkpoint therapy. iScience, 14, 113–124. https://doi.org/10.1016/j.isci.2019.03.017
Qi, T., Fu, J., Zhang, W., Cui, W., Xu, X., Yue, J., …Tian, X. (2020). Mutation of PD-1 immune receptor tyrosine-based switch motif (ITSM) enhances the antitumor activity of cytotoxic T cells. Translational Cancer Research, 9(11), 6811–6819. https://doi.org/10.21037/tcr-20-2118
Patsoukis, N., Duke-Cohan, J. S., Chaudhri, A., Aksoylar, H.-I., Wang, Q., Council, A., …Boussiotis, V. A. (2020). Interaction of SHP-2 SH2 domains with PD-1 ITSM induces PD-1 dimerization and SHP-2 activation. Communications Biology, 3(1), 128. https://doi.org/10.1038/s42003-020-0845-0
Lázár-Molnár, E., Yan, Q., Cao, E., Ramagopal, U., Nathenson, S. G., & Almo, S. C. (2008). Crystal structure of the complex between programmed death-1 (PD-1) and its ligand PD-L2. Proceedings of the National Academy of Sciences of the United States of America, 105(30), 10483–10488. https://doi.org/10.1073/pnas.0804453105
Article ADS PubMed PubMed Central Google Scholar
Shinohara, T., Taniwaki, M., Ishida, Y., Kawaichi, M., & Honjo, T. (1994). Structure and chromosomal localization of the human PD-1 gene (PDCD1). Genomics, 23(3), 704–706. https://doi.org/10.1006/geno.1994.1562
Zhao, Q., Guo, J., Zhao, Y., Shen, J., Kaboli, P. J., Xiang, S., …Xiao, Z. (2020). Comprehensive assessment of PD-L1 and PD-L2 dysregulation in gastrointestinal cancers. Epigenomics, 12(24), 2155–2171. https://doi.org/10.2217/epi-2020-0093
Li, D., Xiang, S., Shen, J., Xiao, M., Zhao, Y., Wu, X., …Wen, Q. (2020). Comprehensive understanding of B7 family in gastric cancer: expression profile, association with clinicopathological parameters and downstream targets. International Journal of Biological Sciences, 16(4), 568–582. https://doi.org/10.7150/ijbs.39769
Wang, H., Yao, H., Li, C., Shi, H., Lan, J., Li, Z., …Xu, J. (2019). HIP1R targets PD-L1 to lysosomal degradation to alter T cell-mediated cytotoxicity. Nature Chemical Biology, 15(1), 42–50. https://doi.org/10.1038/s41589-018-0161-x
Chen, Y., Liu, P., Gao, F., Cheng, H., Qi, J., & Gao, G. F. (2010). A dimeric structure of PD-L1: Functional units or evolutionary relics? Protein Cell, 1(2), 153–160. https://doi.org/10.1007/s13238-010-0022-1
Article PubMed PubMed Central Google Scholar
Okazaki, T., & Honjo, T. (2006). The PD-1-PD-L pathway in immunological tolerance. Trends in Immunology, 27(4), 195–201. https://doi.org/10.1016/j.it.2006.02.001
Philips, E. A., Garcia-España, A., Tocheva, A. S., Ahearn, I. M., Adam, K. R., Pan, R., …Kong, X.-P. (2020). The structural features that distinguish PD-L2 from PD-L1 emerged in placental mammals. The Journal of Biological Chemistry, 295(14), 4372–4380. https://doi.org/10.1074/jbc.AC119.011747
Wang, S., Bajorath, J., Flies, D. B., Dong, H., Honjo, T., & Chen, L. (2003). Molecular modeling and functional mapping of B7–H1 and B7-DC uncouple costimulatory function from PD-1 interaction. The Journal of Experimental Medicine, 197(9), 1083–1091. https://doi.org/10.1084/jem.20021752
Article PubMed PubMed Central Google Scholar
Gainza, P., Wehrle, S., VanHall-Beauvais, A., Marchand, A., Scheck, A., Harteveld, Z., …Correia, B. E. (2023). De novo design of protein interactions with learned surface fingerprints. Nature, 617(7959), 176–184. https://doi.org/10.1038/s41586-023-05993-x
Lin, D. Y.-W., Tanaka, Y., Iwasaki, M., Gittis, A. G., Su, H.-P., Mikami, B., …Garboczi, D. N. (2008). The PD-1/PD-L1 complex resembles the antigen-binding Fv domains of antibodies and T cell receptors. Proceedings of the National Academy of Sciences of the United States of America, 105(8), 3011–3016. https://doi.org/10.1073/pnas.0712278105
Almahmoud, S., & Zhong, H. A. (2019). Molecular modeling studies on the binding mode of the PD-1/PD-L1 complex inhibitors. International Journal of Molecular Sciences, 20(18). https://doi.org/10.3390/ijms20184654
Lee, H. T., Lee, J. Y., Lim, H., Lee, S. H., Moon, Y. J., Pyo, H. J., …Heo, Y.-S. (2017). Molecular mechanism of PD-1/PD-L1 blockade via anti-PD-L1 antibodies atezolizumab and durvalumab. Scientific Reports, 7(1), 5532. https://doi.org/10.1038/s41598-017-06002-8
Tan, S., Zhang, H., Chai, Y., Song, H., Tong, Z., Wang, Q., …Yan, J. (2017). An unexpected N-terminal loop in PD-1 dominates binding by nivolumab. Nature Communications, 8, 14369. https://doi.org/10.1038/ncomms14369
Hao, G., Wesolowski, J. S., Jiang, X., Lauder, S., & Sood, V. D. (2015). Epitope characterization of an anti-PD-L1 antibody using orthogonal approaches. Journal of Molecular Recognition: JMR, 28(4), 269–276. https://doi.org/10.1002/jmr.2418
Magarkar, A., Schnapp, G., Apel, A.-K., Seeliger, D., & Tautermann, C. S. (2019). Enhancing drug residence time by shielding of intra-protein hydrogen bonds: A case study on CCR2 antagonists. ACS Medicinal Chemistry Letters, 10(3), 324–328. https://doi.org/10.1021/acsmedchemlett.8b00590
Article PubMed PubMed Central Google Scholar
Lee, J. Y., Lee, H. T., Shin, W., Chae, J., Choi, J., Kim, S. H., …Heo, Y.-S. (2016). Structural basis of checkpoint blockade by monoclonal antibodies in cancer immunotherapy. Nature Communications, 7, 13354. https://doi.org/10.1038/ncomms13354
Bangarh, R., Khatana, C., Kaur, S., Sharma, A., Kaushal, A., Siwal, S. S., …Saini, A. K. (2023). Aberrant protein glycosylation: Implications on diagnosis and Immunotherapy. Biotechnology Advances, 66, 108149. https://doi.org/10.1016/j.biotechadv.2023.108149
Hu, M., Zhang, R., Yang, J., Zhao, C., Liu, W., Huang, Y., …Tang, J. (2023). The role of N-glycosylation modification in the pathogenesis of liver cancer. Cell Death & Disease, 14(3), 222. https://doi.org/10.1038/s41419-023-05733-z
Liu, Y., Lan, L., Li, Y., Lu, J., He, L., Deng, Y., …Lu, B. (2022). N-glycosylation stabilizes MerTK and promotes hepatocellular carcinoma tumor growth. Redox Biology, 54, 102366. https://doi.org/10.1016/j.redox.2022.102366
Morales-Betanzos, C. A., Lee, H., Gonzalez Ericsson, P. I., Balko, J. M., Johnson, D. B., Zimmerman, L. J., & Liebler, D. C. (2017). Quantitative mass spectrometry analysis of PD-L1 protein expression, N-glycosylation and expression stoichiometry with PD-1 and PD-L2 in human melanoma. Molecular & Cellular Proteomics: MCP, 16(10), 1705–1717. https://doi.org/10.1074/mcp.RA117.000037
Article PubMed Central Google Scholar
D’Arrigo, P., Russo, M., Rea, A., Tufano, M., Guadagno, E., DelBasso De Caro, M. L., …Romano, S. (2017). A regulatory role for the co-chaperone FKBP51s in PD-L1 expression in glioma. Oncotarget, 8(40), 68291–68304. https://doi.org/10.18632/oncotarget.19309
Maher, C. M., Thomas, J. D., Haas, D. A., Longen, C. G., Oyer, H. M., Tong, J. Y., & Kim, F. J. (2018). Small-Molecule Sigma1 modulator induces autophagic degradation of PD-L1. Molecular Cancer Research: MCR, 16(2), 243–255. https://doi.org/10.1158/1541-7786.MCR-17-0166
Duan, X., Xie, Y., Yu, J., Hu, X., Liu, Z., Li, N., …Wang, Y. (2022). MCT4/Lactate promotes PD-L1 glycosylation in triple-negative breast cancer cells. Journal of Oncology, 2022, 3659714. https://doi.org/10.1155/2022/3659714
Li, C.-W., Lim, S.-O., Xia, W., Lee, H.-H., Chan, L.-C., Kuo, C.-W., …Hung, M.-C. (2016). Glycosylation and stabilization of programmed death ligand-1 suppresses T-cell activity. Nature Communications, 7, 12632. https://doi.org/10.1038/ncomms12632
Ou-Yang, F., Li, C.-L., Chen, C.-C., Shen, Y.-C., Moi, S.-H., Luo, C.-W., …Hung, M.-C. (2022). De-glycosylated membrane PD-L1 in tumor tissues as a biomarker for responsiveness to atezolizumab (Tecentriq) in advanced breast cancer patients. American Journal of Cancer Research, 12(1), 123–137
Goletz, C., Lischke, T., Harnack, U., Schiele, P., Danielczyk, A., Rühmann, J., & Goletz, S. (2018). Glyco-engineered anti-human programmed death-Ligand 1 antibody mediates stronger CD8 T cell activation than its normal glycosylated and non-glycosylated counterparts. Frontiers in Immunology, 9, 1614. https://doi.org/10.3389/fimmu.2018.01614
Article PubMed PubMed Central Google Scholar
Cohen Saban, N., Yalin, A., Landsberger, T., Salomon, R., Alva, A., Feferman, T., …Dahan, R. (2023). Fc glycoengineering of a PD-L1 antibody harnesses Fcγ receptors for increased antitumor efficacy. Science Immunology, 8(81), eadd8005. https://doi.org/10.1126/sciimmunol.add8005
Okada, M., Chikuma, S., Kondo, T., Hibino, S., Machiyama, H., Yokosuka, T., …Yoshimura, A. (2017). Blockage of core fucosylation reduces cell-surface expression of PD-1 and promotes anti-tumor immune responses of T cells. Cell Reports, 20(5), 1017–1028. https://doi.org/10.1016/j.celrep.2017.07.027
Sun, L., Li, C.-W., Chung, E. M., Yang, R., Kim, Y.-S., Park, A. H., …Hung, M.-C. (2020). Targeting glycosylated PD-1 induces potent antitumor immunity. Cancer Research, 80(11), 2298–2310. https://doi.org/10.1158/0008-5472.CAN-19-3133
Zhou, S., Zhu, J., Xu, J., Gu, B., Zhao, Q., Luo, C., …Cheng, X. (2022). Anti-tumour potential of PD-L1/PD-1 post-translational modifications. Immunology, 167(4), 471–481. https://doi.org/10.1111/imm.13573
Wang, M., Wang, J., Wang, R., Jiao, S., Wang, S., Zhang, J., & Zhang, M. (2019). Identification of a monoclonal antibody that targets PD-1 in a manner requiring PD-1 Asn58 glycosylation. Communications Biology, 2, 392. https://doi.org/10.1038/s42003-019-0642-9
Comments (0)