BDIS-SLAM: a lightweight CPU-based dense stereo SLAM for surgery

Haouchine N, Dequidt J, Peterlik I, Kerrien E, Berger M-O, Cotin S (2013) Image-guided simulation of heterogeneous tissue deformation for augmented reality during hepatic surgery. In: IEEE international symposium on mixed and augmented reality, pp 199–208. IEEE

Widya AR, Monno Y, Imahori K, Okutomi M, Suzuki S, Gotoda T, Miki K (2019) 3D reconstruction of whole stomach from endoscope video using structure-from-motion. In: 2019 41st annual international conference of the IEEE engineering in medicine and biology society (EMBC), pp 3900–3904. IEEE

Portalés C, Gimeno J, Salvador A, García-Fadrique A, Casas-Yrurzum S (2022) Mixed reality annotation of robotic-assisted surgery videos with real-time tracking and stereo matching. Comput Graph 110:125–140

Article  Google Scholar 

Ratheesh A, Soman P, Nair MR, Devika R, Aneesh R (2016) Advanced algorithm for polyp detection using depth segmentation in colon endoscopy. In: 2016 international conference on communication systems and networks (ComNet), pp 179–183. IEEE

Mahmood F, Yang Z, Chen R, Borders D, Xu W, Durr NJ (2019) Polyp segmentation and classification using predicted depth from monocular endoscopy. In: Medical imaging 2019: computer-aided diagnosis, vol 10950. International Society for Optics and Photonics, p 1095011

Jia X, Mai X, Cui Y, Yuan Y, Xing X, Seo H, Xing L, Meng MQ-H (2020) Automatic polyp recognition in colonoscopy images using deep learning and two-stage pyramidal feature prediction. IEEE Trans Autom Sci Eng 17(3):1570–1584

Google Scholar 

Ma X, Song C, Chiu PW, Li Z (2020) Visual servo of a 6-DOF robotic stereo flexible endoscope based on da Vinci Research Kit (dVRK) system. IEEE Robot Autom Lett 5(2):820–827

Article  Google Scholar 

Ma X, Song C, Qian L, Liu W, Chiu PW, Li Z (2022) Augmented reality-assisted autonomous view adjustment of a 6-DOF robotic stereo flexible endoscope. IEEE Trans Med Robot Bionics 4(2):356–367

Article  Google Scholar 

Grasa OG, Civera J, Montiel J (2011). EKF monocular SLAM with relocalization for laparoscopic sequences. In: Proceedings of the IEEE International Conference on Robotics and Automation. IEEE, pp 4816–4821

Lin B, Johnson A, Qian X, Sanchez J, Sun Y (2013) Simultaneous tracking, 3D reconstruction and deforming point detection for stereoscope guided surgery. In: Augmented reality environments for medical imaging and computer-assisted interventions. Springer, pp 35–44

Mahmoud N, Cirauqui I, Hostettler A, Doignon C, Soler L, Marescaux J, Montiel J (2016) ORBSLAM-based endoscope tracking and 3D reconstruction. In: International workshop on computer-assisted and robotic endoscopy. Springer, pp 72–83

Mahmoud N, Hostettler A, Collins T, Soler L, Doignon C, Montiel JMM (2017) SLAM based quasi dense reconstruction for minimally invasive surgery scenes. arXiv preprint arXiv:1705.09107

Turan M, Almalioglu Y, Araujo H, Konukoglu E, Sitti M (2017) A non-rigid map fusion-based direct SLAM method for endoscopic capsule robots. Int J Intell Robot Appl 1(4):399–409

Article  PubMed  PubMed Central  Google Scholar 

Oliva Maza L, Steidle F, Klodmann J, Strobl K, Triebel R (2022) An ORB-SLAM3-based approach for surgical navigation in ureteroscopy. Comput Methods Biomech Biomed Eng Imaging Vis 11(4):1005–1011

Article  Google Scholar 

Song J, Wang J, Zhao L, Huang S, Dissanayake G (2017) Dynamic reconstruction of deformable soft-tissue with stereo scope in minimal invasive surgery. IEEE Robot Autom Lett 3(1):155–162

Article  Google Scholar 

Song J, Wang J, Zhao L, Huang S, Dissanayake G (2018) MIS-SLAM: real-time large-scale dense deformable SLAM system in minimal invasive surgery based on heterogeneous computing. IEEE Robot Autom Lett 3(4):4068–4075

Article  Google Scholar 

Zhou H, Jayender J (2021) Real-time nonrigid mosaicking of laparoscopy images. IEEE Trans Med Imaging 40(6):1726–1736

Lamarca J, Parashar S, Bartoli A, Montiel J (2020) DefSLAM: tracking and mapping of deforming scenes from monocular sequences. IEEE Trans Robot 37(1):291–303

Article  Google Scholar 

Yang Z, Lin S, Simon R, Linte CA (2022) Endoscope localization and dense surgical scene reconstruction for stereo endoscopy by unsupervised optical flow and Kanade–Lucas–Tomasi tracking. In: 2022 44th annual international conference of the IEEE engineering in medicine & biology society (EMBC). IEEE, pp 4839–4842

Liu X, Li Z, Ishii M, Hager GD, Taylor RH, Unberath M (2022) Sage: SLAM with appearance and geometry prior for endoscopy. In: Proceedings of the IEEE international conference on robotics and automation. IEEE, pp 5587–5593

Whelan T, Leutenegger S, Salas-Moreno R, Glocker B, Davison A (2015) ElasticFusion: dense SLAM without a pose graph. Robot Sci Syst. https://doi.org/10.1186/s41074-017-0027-2

Song J, Zhu Q, Lin J, Ghaffari M (2022) BDIS: Bayesian dense inverse searching method for real-time stereo surgical image matching. IEEE Trans Robot. https://doi.org/10.1109/TRO.2022.3215018

Article  Google Scholar 

Geiger A, Roser M, Urtasun R (2010) Efficient large-scale stereo matching. In: Asian conference on computer vision. Springer, pp. 25–38

Zampokas G, Tsiolis K, Peleka G, Mariolis I, Malasiotis S, Tzovaras D (2018) Real-time 3D reconstruction in minimally invasive surgery with quasi-dense matching. In: IEEE international conference on imaging systems and techniques. IEEE, pp 1–6

Cartucho J, Tukra S, Li Y, Elson DS, Giannarou S (2020) VisionBlender: a tool to efficiently generate computer vision datasets for robotic surgery. Comput Methods Biomech Biomed Eng Imaging Vis 9(4):331–338

Article  Google Scholar 

Zhang L, Ye M, Giataganas P, Hughes M, Yang G-Z (2017) Autonomous scanning for endomicroscopic mosaicing and 3D fusion. In: Proceedings - IEEE international conference on robotics and automation. IEEE, pp 3587–3593

Zhan J, Cartucho J, Giannarou S (2020) Autonomous tissue scanning under free-form motion for intraoperative tissue characterisation. In: Proceedings of the IEEE international conference on robotics and automation (ICRA). IEEE, pp 11147–11154

Chang, J.-R., Chen, Y.-S.: Pyramid stereo matching network. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 5410–5418 (2018)

Yang G, Manela J, Happold M, Ramanan D (2019) Hierarchical deep stereo matching on high-resolution images. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 5515–5524

Guo X, Yang K, Yang W, Wang X, Li H (2019) Group-wise correlation stereo network. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3273–3282

Tonioni A, Tosi F, Poggi M, Mattoccia S, Stefano LD (2019) Real-time self-adaptive deep stereo. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 195–204

Xu H, Zhang J (2020) HAPNet: adaptive aggregation network for efficient stereo matching. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1959–1968

Brandao P, Psychogyios D, Mazomenos E, Stoyanov D, Janatka M (2020) HAPNet: hierarchically aggregated pyramid network for real-time stereo matching. Comput Methods Biomech Biomed Eng Imaging Vis 9(3):219–224

Article  Google Scholar 

Long Y, Li Z, Yee CH, Ng CF, Taylor RH, Unberath M, Dou Q (2021) E-DSSR: efficient dynamic surgical scene reconstruction with transformer-based stereoscopic depth perception. In: international conference on medical image computing and computer assisted intervention. Springer, pp 415–425

Allan M, Mcleod J, Wang CC, Rosenthal JC, Fu KX, Zeffiro T, Xia W, Zhanshi Z, Luo H, Zhang, X et al (2021) Stereo correspondence and reconstruction of endoscopic data challenge. arXiv preprint arXiv:2101.01133

Newcombe RA, Izadi S et al (2011) KinectFusion: real-time dense surface mapping and tracking. In: IEEE international symposium on mixed and augmented reality. IEEE, pp 127–136

Izadi S, Kim D, Hilliges O, Molyneaux D, Newcombe R, Kohli P, Shotton J, Hodges S, Freeman D, Davison A et al (2011) KinectFusion: real-time 3D reconstruction and interaction using a moving depth camera. In: Proceedings of the 24th annual ACM symposium on user interface software and technology, pp 559–568

Newcombe RA, Fox D, Seitz SM (2015) DynamicFusion: reconstruction and tracking of non-rigid scenes in real-time. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 343–352

Song J, Zhu Q, Lin J, Ghaffari M (2022) Bayesian dense inverse searching algorithm for real-time stereo matching in minimally invasive surgery. In: International conference on medical image computing and computer-assisted intervention. Springer, pp 333–344

Mur-Artal R, Tardós JD (2017) ORB-SLAM2: An open-source SLAM2 system for monocular, stereo, and RGB-D cameras. IEEE Trans. Robot. 33(5):1255–1262

Article  Google Scholar 

Mahmoud N, Collins T, Hostettler A, Soler L, Doignon C, Montiel JMM (2018) Live tracking and dense reconstruction for handheld monocular endoscopy. IEEE transactions on medical imaging 38(1):79–89

Article  PubMed  Google Scholar 

Scharstein D, Szeliski R (2002) A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. Int. J. Comput. Vis. 47(1):7–42

Article  Google Scholar 

Baker S, Matthews I (2004) Lucas-Kanade 20 years on: A unifying framework. Int. J. Comput. Vis. 56(3):221–255

Article  Google Scholar 

Kroeger, T., Timofte, R., Dai, D., Van Gool, L.: Fast optical flow using dense inverse search. In: Proc. European Conf. Comput. Vis., pp. 471–488 (2016). Springer

Engel J, Koltun V, Cremers D (2017) Direct sparse odometry. IEEE Trans. Pattern Anal. Mach. Intell. 40(3):611–625

Article  PubMed  Google Scholar 

Giannarou S, Visentini-Scarzanella M, Yang G-Z (2013) Probabilistic tracking of affine-invariant anisotropic regions. IEEE Trans. Pattern Anal. Mach. Intell. 35(1):130–143

Comments (0)

No login
gif