Li D, Wang M (2022) A 3D image registration method for laparoscopic liver surgery navigation. Electronics 11(11):1670. https://doi.org/10.3390/electronics11111670
Zhang F, Prisacariu V, Yang R, Torr PH (2019) Ga-net: guided aggregation net for end-to-end stereo matching. In: proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 185–194. https://doi.org/10.1109/CVPR.2019.00027
Shen Z, Dai Y, Song X, Rao Z, Zhou D, Zhang L (2022) Pcw-net: pyramid combination and warping cost volume for stereo matching. In: computer vision–ECCV 2022: 17th European conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXXII, Springer, pp. 280–297. https://doi.org/10.1007/978-3-031-19824-3_17
Li Z, Liu X, Drenkow N, Ding A, Creighton FX, Taylor RH, Unberath M (2021) Revisiting stereo depth estimation from a sequence-to-sequence perspective with transformers. In: proceedings of the IEEE/CVF international conference on computer vision, pp. 6197–6206. https://doi.org/10.1109/ICCV48922.2021.00614
Xu H, Zhang J (2020) Aanet: adaptive aggregation network for efficient stereo matching. In: proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 1959–1968. https://doi.org/10.1109/CVPR42600.2020.00203
Chang J-R, Chen Y-S (2018) Pyramid stereo matching network. In: proceedings of the IEEE conference on computer vision and pattern recognition, pp. 5410–5418. https://doi.org/10.1109/CVPR.2018.00567
Cheng X, Zhong Y, Harandi M, Drummond T, Wang Z, Ge Z (2022) Deep laparoscopic stereo matching with transformers. In: medical image computing and computer assisted intervention–MICCAI 2022: 25th international conference, Singapore, September 18–22, 2022, Proceedings, Part VII, Springer, pp 464–474. https://doi.org/10.1007/978-3-031-16449-1_44
Xia W, Chen EC, Pautler S, Peters TM (2022) A robust edge-preserving stereo matching method for laparoscopic images. IEEE Trans Med Imaging 41(7):1651–1664. https://doi.org/10.1109/TMI.2022.3147414
Luo H, Wang C, Duan X, Liu H, Wang P, Hu Q, Jia F (2022) Unsupervised learning of depth estimation from imperfect rectified stereo laparoscopic images. Comput Biol Med 140:105109. https://doi.org/10.1016/j.compbiomed.2021.105109
Liu X, Sinha A, Ishii M, Hager GD, Reiter A, Taylor RH, Unberath M (2019) Dense depth estimation in monocular endoscopy with self-supervised learning methods. IEEE Trans Med Imaging 39(5):1438–1447. https://doi.org/10.1109/TMI.2019.2950936
Article PubMed PubMed Central Google Scholar
Li F, Li Q, Zhang T, Niu Y, Shi G (2019) Depth acquisition with the combination of structured light and deep learning stereo matching. Signal Process Image Commun 75:111–117. https://doi.org/10.1016/j.image.2019.04.001
Bardozzo F, Collins T, Forgione A, Hostettler A, Tagliaferri R (2022) StaSiS-Net: a stacked and siamese disparity estimation network for depth reconstruction in modern 3D laparoscopy. Med Image Anal 77:102380. https://doi.org/10.1016/j.media.2022.102380
Wei R, Li B, Mo H, Lu B, Long Y, Yang B, Dou Q, Liu Y, Sun D (2021) Stereo dense scene reconstruction and accurate laparoscope localization for learning-based navigation in robot-assisted surgery. arXiv e-prints: arXiv: 2110.03912.
Liu C, Chen L-C, Schroff F, Adam H, Hua W, Yuille AL, Fei-Fei L (2019) Auto-deeplab: Hierarchical neural architecture search for semantic image segmentation. In: proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 82–92. https://doi.org/10.1109/CVPR.2019.00017
Xue Y, Qin J (2022) Partial connection based on channel attention for differentiable neural architecture search. IEEE Trans Industr Inf. https://doi.org/10.1109/TII.2022.3184700
Zhang X, Xu H, Mo H, Tan J, Yang C, Wang L, Ren W (2021) Dcnas: Densely connected neural architecture search for semantic image segmentation. In: proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 13956–13967. https://doi.org/10.1109/CVPR46437.2021.01374
Wang H, Wang Y, Sun R, Li B (2022) Global convergence of maml and theory-inspired neural architecture search for few-shot learning. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 9797–9808. https://doi.org/10.1109/CVPR52688.2022.00957
Ye P, Li B, Li Y, Chen T, Fan J, Ouyang W (2022) b-darts: Beta-decay regularization for differentiable architecture search. In: proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 10874–10883. https://doi.org/10.1109/CVPR52688.2022.01060
Zoph B, Le Q (2016) Neural architecture search with reinforcement learning. In: international conference on learning representations
Zoph B, Vasudevan V, Shlens J, Le QV (2018) Learning transferable architectures for scalable image recognition. In: proceedings of the IEEE conference on computer vision and pattern recognition, pp 8697–8710. https://doi.org/10.1109/CVPR.2018.00907
Liu H, Simonyan K, Yang Y (2018) DARTS: differentiable architecture search. In: international conference on learning representations
Fang J, Sun Y, Zhang Q, Li Y, Liu W, Wang X (2020) Densely connected search space for more flexible neural architecture search. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 10628–10637. pp 10628–10637. https://doi.org/10.1109/CVPR42600.2020.01064
Cheng X, Zhong Y, Harandi M, Dai Y, Chang X, Li H, Drummond T, Ge Z (2020) Hierarchical neural architecture search for deep stereo matching. Adv Neural Inf Process Syst 33:22158–22169
Kendall A, Martirosyan H, Dasgupta S, Henry P, Kennedy R, Bachrach A, Bry A (2017) End-to-end learning of geometry and context for deep stereo regression. In: proceedings of the IEEE international conference on computer vision, pp. 66–75. https://doi.org/10.1109/ICCV.2017.17
Xu Y, Xie L, Zhang X, Chen X, Qi G-J, Tian Q, Xiong H (2019) PC-DARTS: partial channel connections for memory-efficient architecture search. In: international conference on learning representations
Bottou L (2010) Large-scale machine learning with stochastic gradient descent. In: proceedings of COMPSTAT'2010: 19th international conference on computational statistics Paris France, August 22–27, 2010 Keynote, Invited and Contributed Papers, Springer: London. pp. 177–186. https://doi.org/10.1007/978-3-7908-2604-3_16
Mayer N, Ilg E, Hausser P, Fischer P, Cremers D, Dosovitskiy A, Brox T (2016) A large dataset to train convolutional networks for disparity, optical flow, and scene flow estimation. In: proceedings of the IEEE conference on computer vision and pattern recognition, pp. 4040–4048. https://doi.org/10.1109/CVPR.2016.438
Allan M, Mcleod J, Wang C, Rosenthal JC, Hu Z, Gard N, Eisert P, Fu KX, Zeffiro T, Xia W (2021) Stereo correspondence and reconstruction of endoscopic data challenge. arXiv preprint arXiv:210101133
Edwards PE, Psychogyios D, Speidel S, Maier-Hein L, Stoyanov D (2022) SERV-CT: a disparity dataset from cone-beam CT for validation of endoscopic 3D reconstruction. Med Image Anal 76:102302. https://doi.org/10.1016/j.media.2021.102302
Article PubMed PubMed Central Google Scholar
Sun K, Xiao B, Liu D, Wang J (2019) Deep high-resolution representation learning for human pose estimation. In: proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 5693–5703. https://doi.org/10.1109/CVPR.2019.00584
Wu J, Sun J, Shen SG, Xu B, Li J, Zhang S (2016) Computer-assisted navigation: its role in intraoperatively accurate mandibular reconstruction. Oral Surg Oral Med Oral Pathol Oral Radiol 122(2):134–142. https://doi.org/10.1016/j.oooo.2016.02.001
Comments (0)