The superior colliculus projection upon the macaque inferior olive

Akaike T (1992) The tectorecipient zone in the inferior olivary nucleus in the rat. J Comp Neurol 320:398–414. https://doi.org/10.1002/cne.903200311

Article  CAS  PubMed  Google Scholar 

Appell PP, Behan M (1990) Sources of subcortical GABAergic projections to the superior colliculus in the cat. J Comp Neurol 302:143–158. https://doi.org/10.1002/cne.903020111

Article  CAS  PubMed  Google Scholar 

Barmack NH (2006) Inferior olive and oculomotor system. Prog Brain Res 151:269–291. https://doi.org/10.1016/S0079-6123(05)51009-4

Article  PubMed  Google Scholar 

Behan M (1985) An EM-autoradiographic and EM-HRP study of the commissural projection of the superior colliculus in the cat. J Comp Neurol 234:105–116. https://doi.org/10.1002/cne.902340108

Article  CAS  PubMed  Google Scholar 

Büttner-Ennever JA, Cohen B, Horn AK, Reisine H (1996) Efferent pathways of the nucleus of the optic tract in monkey and their role in eye movements. J Comp Neurol 373:90–107. https://doi.org/10.1002/(SICI)1096-9861(19960909)373:1%3c90::AID-CNE8%3e3.0.CO;2-8

Article  PubMed  Google Scholar 

Covey E, Hall WC, Kobler JB (1987) Subcortical connections of the superior colliculus in the mustache bat. Pteronotus parnellii. J Comp Neurol 263:179–197. https://doi.org/10.1002/cne.902630203

Article  CAS  PubMed  Google Scholar 

Edelman JA, Goldberg ME (2002) Effect of short-term saccadic adaptation on saccades evoked by electrical stimulation in the primate superior colliculus. J Neurophysiol 87:1915–1923. https://doi.org/10.1152/jn.00805.2000

Article  PubMed  Google Scholar 

Frens MA, Van Opstal AJ (1997) Monkey superior colliculus activity during short-term saccadic adaptation. Brain Res Bull 43:473–483. https://doi.org/10.1016/s0361-9230(97)80001-9

Article  CAS  PubMed  Google Scholar 

Fuchs AF, Mustari MJ, Robinson FR, Kaneko CR (1992) Visual signals in the nucleus of the optic tract and their brain stem destinations. Ann N Y Acad Sci 656:266–276. https://doi.org/10.1111/j.1749-6632.1992.tb25214.x

Article  CAS  PubMed  Google Scholar 

Graham J (1977) An autoradiographic study of the efferent connections of the superior colliculus in the cat. J Comp Neurol 173:629–654. https://doi.org/10.1002/cne.901730403

Article  CAS  PubMed  Google Scholar 

Grantyn A, Brandi A-M, Dubayle D, Graf W, Ugolini G, Hadjidimitrakis K, Moschovakis A (2002) Density gradients of trans-synaptically labeled collicular neurons after injections of rabies virus in the lateral rectus muscle of the rhesus monkey. J Comp Neurol 451:346–361. https://doi.org/10.1002/cne.10353

Article  PubMed  Google Scholar 

Hafed ZM, Krauzlis RJ (2008) Goal representations dominate superior colliculus activity during extrafoveal tracking. J Neurosci 28:9426–9439. https://doi.org/10.1523/JNEUROSCI.1313-08.2008

Article  CAS  PubMed  PubMed Central  Google Scholar 

Harting JK (1977) Descending pathways from the superior collicullus: an autoradiographic analysis in the rhesus monkey (Macaca mulatta). J Comp Neurol 173:583–612. https://doi.org/10.1002/cne.901730311

Article  CAS  PubMed  Google Scholar 

Hess DT (1982) The tecto-olivo-cerebellar pathway in the rat. Brain Res 250:143–148. https://doi.org/10.1016/0006-8993(82)90960-x

Article  CAS  PubMed  Google Scholar 

Hoffmann KP, Distler C (1989) Quantitative analysis of visual receptive fields of neurons in nucleus of the optic tract and dorsal terminal nucleus of the accessory optic tract in macaque monkey. J Neurophysiol 62:416–428. https://doi.org/10.1152/jn.1989.62.2.416

Article  CAS  PubMed  Google Scholar 

Judge SJ, Richmond BJ, Chu FC (1980) Implantation of magnetic search coils for measurement of eye position: an improved method. Vision Res 20:535–538. https://doi.org/10.1016/0042-6989(80)90128-5

Article  CAS  PubMed  Google Scholar 

Kaku Y, Yoshida K, Iwamoto Y (2009) Learning signals from the superior colliculus for adaptation of saccadic eye movements in the monkey. J Neurosci 29:5266–5275. https://doi.org/10.1523/JNEUROSCI.0661-09.2009

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kojima Y (2019) A neuronal process for adaptive control of primate saccadic system. Prog Brain Res 249:169–181. https://doi.org/10.1016/bs.pbr.2019.03.029

Article  PubMed  Google Scholar 

Kojima Y, May PJ (2021) The substantia nigra pars reticulata modulates error-based saccadic learning in monkeys. eNeuro 8:ENEURO.0519–20.2021. doi: https://doi.org/10.1523/ENEURO.0519-20.2021.

Kojima Y, Soetedjo R (2017) Change in sensitivity to visual error in superior colliculus during saccade adaptation. Sci Rep 7:9566. https://doi.org/10.1038/s41598-017-10242-z

Article  PubMed  PubMed Central  Google Scholar 

Kojima Y, Soetedjo R (2018) Elimination of the error signal in the superior colliculus impairs saccade motor learning. Proc Natl Acad Sci U S A 115:E8987–E8995. https://doi.org/10.1073/pnas.1806215115

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kojima Y, IwamotoY RFR, Noto CT, Yoshida K (2008) Premotor inhibitory neurons carry signals related to saccade adaptation in the monkey. J Neurophysiol 99:220–230. https://doi.org/10.1152/jn.00554.2007

Article  PubMed  Google Scholar 

Kojima Y, Soetedjo R, Fuchs AF (2010a) Changes in simple spike activity of some Purkinje cells in the oculomotor vermis during saccade adaptation are appropriate to participate in motor learning. J Neurosci 30:3715–3727. https://doi.org/10.1523/JNEUROSCI.4953-09.2010

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kojima Y, Soetedjo R, Fuchs AF (2010b) Effects of GABA agonist and antagonist injections into the oculomotor vermis on horizontal saccades. Brain Res 1366:93–100. https://doi.org/10.1016/j.brainres.2010.10.027

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kojima Y, Soetedjo R, Fuchs AF (2011) Effect of inactivation and disinhibition of the oculomotor vermis on saccade adaptation. Brain Res 1401:30–39. https://doi.org/10.1016/j.brainres.2011.05.027

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kojima Y, Robinson FR, Soetedjo R (2014) Cerebellar fastigial nucleus influence on ipsilateral abducens activity during saccades. J Neurophysiol 111:1553–1563. https://doi.org/10.1152/jn.00567.2013

Article  PubMed  PubMed Central  Google Scholar 

Künzle H (1997) Connections of the superior colliculus with the tegmentum and the cerebellum in the hedgehog tenrec. Neurosci Res 28:127–145. https://doi.org/10.1016/s0168-0102(97)00034-5

Article  PubMed  Google Scholar 

Kyuhou SI, Matsuzaki R (1991a) Topographical organization of the tecto-olivo-cerebellar projection in the cat. Neuroscience 41:227–241. https://doi.org/10.1016/0306-4522(91)90212-7

Article  CAS  PubMed  Google Scholar 

Kyuhou SI, Matsuzaki R (1991b) Topographical organization of climbing fiber pathway from the superior colliculus to cerebellar vermal lobules VI-VII in the cat. Neuroscience 45:691–699. https://doi.org/10.1016/0306-4522(91)90281-r

Article  CAS  PubMed  Google Scholar 

May PJ (2006) The mammalian superior colliculus: laminar structure and connections. Prog Brain Res 151:321–378. https://doi.org/10.1016/S0079-6123(05)51011-2

Article  PubMed  Google Scholar 

May PJ, Porter JD (1992) The laminar distribution of macaque tectobulbar and tectospinal neurons. Vis Neurosci 8:257–276. https://doi.org/10.1017/s0952523800002911

Article  CAS  PubMed  Google Scholar 

May PJ, Bohlen MO, Perkins E, Wang N, Warren S (2021) Superior colliculus projections to target populations in the supraoculomotor area of the macaque monkey. Vis Neurosci 38:E017. https://doi.org/10.1017/s095252382100016x

Article  PubMed  PubMed Central  Google Scholar 

Melis BJ, van Gisbergen JA (1996) Short-term adaptation of electrically induced saccades in monkey superior colliculus. J Neurophysiol 76:1744–1758. https://doi.org/10.1152/jn.1996.76.3.1744

Article  CAS  PubMed  Google Scholar 

Moschovakis AK, Karabelas AB, Highstein SM (1988) Structure-function relationships in the primate superior colliculus. I. Morphological classification of efferent neurons. J Neurophysiol 60:232–262. https://doi.org/10.1152/jn.1988.60.1.232

Article  CAS  PubMed  Google Scholar 

Moschovakis AK, Kitama T, Dalezios Y, Petit J, Brandi AM, Grantyn AA (1998) An anatomical substrate for the spatiotemporal transformation. J Neurosci 18:10219–10229. https://doi.org/10.1523/JNEUROSCI.18-23-10219.1998

Article  CAS 

Comments (0)

No login
gif