Akaike T (1992) The tectorecipient zone in the inferior olivary nucleus in the rat. J Comp Neurol 320:398–414. https://doi.org/10.1002/cne.903200311
Article CAS PubMed Google Scholar
Appell PP, Behan M (1990) Sources of subcortical GABAergic projections to the superior colliculus in the cat. J Comp Neurol 302:143–158. https://doi.org/10.1002/cne.903020111
Article CAS PubMed Google Scholar
Barmack NH (2006) Inferior olive and oculomotor system. Prog Brain Res 151:269–291. https://doi.org/10.1016/S0079-6123(05)51009-4
Behan M (1985) An EM-autoradiographic and EM-HRP study of the commissural projection of the superior colliculus in the cat. J Comp Neurol 234:105–116. https://doi.org/10.1002/cne.902340108
Article CAS PubMed Google Scholar
Büttner-Ennever JA, Cohen B, Horn AK, Reisine H (1996) Efferent pathways of the nucleus of the optic tract in monkey and their role in eye movements. J Comp Neurol 373:90–107. https://doi.org/10.1002/(SICI)1096-9861(19960909)373:1%3c90::AID-CNE8%3e3.0.CO;2-8
Covey E, Hall WC, Kobler JB (1987) Subcortical connections of the superior colliculus in the mustache bat. Pteronotus parnellii. J Comp Neurol 263:179–197. https://doi.org/10.1002/cne.902630203
Article CAS PubMed Google Scholar
Edelman JA, Goldberg ME (2002) Effect of short-term saccadic adaptation on saccades evoked by electrical stimulation in the primate superior colliculus. J Neurophysiol 87:1915–1923. https://doi.org/10.1152/jn.00805.2000
Frens MA, Van Opstal AJ (1997) Monkey superior colliculus activity during short-term saccadic adaptation. Brain Res Bull 43:473–483. https://doi.org/10.1016/s0361-9230(97)80001-9
Article CAS PubMed Google Scholar
Fuchs AF, Mustari MJ, Robinson FR, Kaneko CR (1992) Visual signals in the nucleus of the optic tract and their brain stem destinations. Ann N Y Acad Sci 656:266–276. https://doi.org/10.1111/j.1749-6632.1992.tb25214.x
Article CAS PubMed Google Scholar
Graham J (1977) An autoradiographic study of the efferent connections of the superior colliculus in the cat. J Comp Neurol 173:629–654. https://doi.org/10.1002/cne.901730403
Article CAS PubMed Google Scholar
Grantyn A, Brandi A-M, Dubayle D, Graf W, Ugolini G, Hadjidimitrakis K, Moschovakis A (2002) Density gradients of trans-synaptically labeled collicular neurons after injections of rabies virus in the lateral rectus muscle of the rhesus monkey. J Comp Neurol 451:346–361. https://doi.org/10.1002/cne.10353
Hafed ZM, Krauzlis RJ (2008) Goal representations dominate superior colliculus activity during extrafoveal tracking. J Neurosci 28:9426–9439. https://doi.org/10.1523/JNEUROSCI.1313-08.2008
Article CAS PubMed PubMed Central Google Scholar
Harting JK (1977) Descending pathways from the superior collicullus: an autoradiographic analysis in the rhesus monkey (Macaca mulatta). J Comp Neurol 173:583–612. https://doi.org/10.1002/cne.901730311
Article CAS PubMed Google Scholar
Hess DT (1982) The tecto-olivo-cerebellar pathway in the rat. Brain Res 250:143–148. https://doi.org/10.1016/0006-8993(82)90960-x
Article CAS PubMed Google Scholar
Hoffmann KP, Distler C (1989) Quantitative analysis of visual receptive fields of neurons in nucleus of the optic tract and dorsal terminal nucleus of the accessory optic tract in macaque monkey. J Neurophysiol 62:416–428. https://doi.org/10.1152/jn.1989.62.2.416
Article CAS PubMed Google Scholar
Judge SJ, Richmond BJ, Chu FC (1980) Implantation of magnetic search coils for measurement of eye position: an improved method. Vision Res 20:535–538. https://doi.org/10.1016/0042-6989(80)90128-5
Article CAS PubMed Google Scholar
Kaku Y, Yoshida K, Iwamoto Y (2009) Learning signals from the superior colliculus for adaptation of saccadic eye movements in the monkey. J Neurosci 29:5266–5275. https://doi.org/10.1523/JNEUROSCI.0661-09.2009
Article CAS PubMed PubMed Central Google Scholar
Kojima Y (2019) A neuronal process for adaptive control of primate saccadic system. Prog Brain Res 249:169–181. https://doi.org/10.1016/bs.pbr.2019.03.029
Kojima Y, May PJ (2021) The substantia nigra pars reticulata modulates error-based saccadic learning in monkeys. eNeuro 8:ENEURO.0519–20.2021. doi: https://doi.org/10.1523/ENEURO.0519-20.2021.
Kojima Y, Soetedjo R (2017) Change in sensitivity to visual error in superior colliculus during saccade adaptation. Sci Rep 7:9566. https://doi.org/10.1038/s41598-017-10242-z
Article PubMed PubMed Central Google Scholar
Kojima Y, Soetedjo R (2018) Elimination of the error signal in the superior colliculus impairs saccade motor learning. Proc Natl Acad Sci U S A 115:E8987–E8995. https://doi.org/10.1073/pnas.1806215115
Article CAS PubMed PubMed Central Google Scholar
Kojima Y, IwamotoY RFR, Noto CT, Yoshida K (2008) Premotor inhibitory neurons carry signals related to saccade adaptation in the monkey. J Neurophysiol 99:220–230. https://doi.org/10.1152/jn.00554.2007
Kojima Y, Soetedjo R, Fuchs AF (2010a) Changes in simple spike activity of some Purkinje cells in the oculomotor vermis during saccade adaptation are appropriate to participate in motor learning. J Neurosci 30:3715–3727. https://doi.org/10.1523/JNEUROSCI.4953-09.2010
Article CAS PubMed PubMed Central Google Scholar
Kojima Y, Soetedjo R, Fuchs AF (2010b) Effects of GABA agonist and antagonist injections into the oculomotor vermis on horizontal saccades. Brain Res 1366:93–100. https://doi.org/10.1016/j.brainres.2010.10.027
Article CAS PubMed PubMed Central Google Scholar
Kojima Y, Soetedjo R, Fuchs AF (2011) Effect of inactivation and disinhibition of the oculomotor vermis on saccade adaptation. Brain Res 1401:30–39. https://doi.org/10.1016/j.brainres.2011.05.027
Article CAS PubMed PubMed Central Google Scholar
Kojima Y, Robinson FR, Soetedjo R (2014) Cerebellar fastigial nucleus influence on ipsilateral abducens activity during saccades. J Neurophysiol 111:1553–1563. https://doi.org/10.1152/jn.00567.2013
Article PubMed PubMed Central Google Scholar
Künzle H (1997) Connections of the superior colliculus with the tegmentum and the cerebellum in the hedgehog tenrec. Neurosci Res 28:127–145. https://doi.org/10.1016/s0168-0102(97)00034-5
Kyuhou SI, Matsuzaki R (1991a) Topographical organization of the tecto-olivo-cerebellar projection in the cat. Neuroscience 41:227–241. https://doi.org/10.1016/0306-4522(91)90212-7
Article CAS PubMed Google Scholar
Kyuhou SI, Matsuzaki R (1991b) Topographical organization of climbing fiber pathway from the superior colliculus to cerebellar vermal lobules VI-VII in the cat. Neuroscience 45:691–699. https://doi.org/10.1016/0306-4522(91)90281-r
Article CAS PubMed Google Scholar
May PJ (2006) The mammalian superior colliculus: laminar structure and connections. Prog Brain Res 151:321–378. https://doi.org/10.1016/S0079-6123(05)51011-2
May PJ, Porter JD (1992) The laminar distribution of macaque tectobulbar and tectospinal neurons. Vis Neurosci 8:257–276. https://doi.org/10.1017/s0952523800002911
Article CAS PubMed Google Scholar
May PJ, Bohlen MO, Perkins E, Wang N, Warren S (2021) Superior colliculus projections to target populations in the supraoculomotor area of the macaque monkey. Vis Neurosci 38:E017. https://doi.org/10.1017/s095252382100016x
Article PubMed PubMed Central Google Scholar
Melis BJ, van Gisbergen JA (1996) Short-term adaptation of electrically induced saccades in monkey superior colliculus. J Neurophysiol 76:1744–1758. https://doi.org/10.1152/jn.1996.76.3.1744
Article CAS PubMed Google Scholar
Moschovakis AK, Karabelas AB, Highstein SM (1988) Structure-function relationships in the primate superior colliculus. I. Morphological classification of efferent neurons. J Neurophysiol 60:232–262. https://doi.org/10.1152/jn.1988.60.1.232
Article CAS PubMed Google Scholar
Moschovakis AK, Kitama T, Dalezios Y, Petit J, Brandi AM, Grantyn AA (1998) An anatomical substrate for the spatiotemporal transformation. J Neurosci 18:10219–10229. https://doi.org/10.1523/JNEUROSCI.18-23-10219.1998
Comments (0)