Ahlsén G, Lindström S, Lo FS-SS (1982) Functional distinction of perigeniculate and thalamic reticular neurons in the cat. Exp Brain Res 46:118–126. https://doi.org/10.1007/BF00238105
Bickford ME, Guido W, Godwin DW (1998) Neurofilament proteins in Y-cells of the cat lateral geniculate nucleus: Normal expression and alteration with visual deprivation. J Neurosci 18:6549–6557. https://doi.org/10.1523/JNEUROSCI.18-16-06549.1998
Article CAS PubMed PubMed Central Google Scholar
Bickford ME, Wei H, Eisenback MA et al (2008) Synaptic organization of thalamocortical axon collaterals in the perigeniculate nucleus and dorsal lateral geniculate nucleus. J Comp Neurol 508:264–285. https://doi.org/10.1002/cne.21671
Article CAS PubMed PubMed Central Google Scholar
Boumil EF, Vohnoutka R, Lee S et al (2018) Assembly and turnover of neurofilaments in growing axonal neurites. Biol Open 7:bio028795. https://doi.org/10.1242/bio.028795
Article CAS PubMed Google Scholar
Burman KJ, Lui LL, Rosa MG, Bourne JA (2007) Development of non-phosphorylated neurofilament protein expression in neurones of the New World monkey dorsolateral frontal cortex. Eur J Neurosci. 25(6):1767–1779. https://doi.org/10.1111/j.1460-9568.2007.05442.x
Burnat K, Van Der Gucht E, Waleszczyk WJ et al (2012) Lack of early pattern stimulation prevents normal development of the alpha (Y) retinal ganglion cell population in the cat. J Comp Neurol 520:2414–2429. https://doi.org/10.1002/cne.23045
Article CAS PubMed Google Scholar
Campbell MJ, Morrison JH (1989) Monoclonal antibody to neurofilament protein (SMI-32) labels a subpopulation of pyramidal neurons in the human and monkey neocortex. J Comp Neurol 282:191–205. https://doi.org/10.1002/cne.902820204
Article CAS PubMed Google Scholar
Cucchiaro JB, Uhlrich DJ, Sherman SM (1991) Electron-microscopic analysis of synaptic input from the perigeniculate nucleus to the A-laminae of the lateral geniculate nucleus in cats. J Comp Neurol 310:316–336. https://doi.org/10.1002/cne.903100304
Article CAS PubMed Google Scholar
Daw NW (2014) Visual development, 3rd edn. Springer US, Branford
Dubin MW, Cleland BG (1977) Organization of visual inputs to interneurons of lateral geniculate nucleus of the cat. J Neurophysiol 40(2):410–427. https://doi.org/10.1152/jn.1977.40.2.410
Article CAS PubMed Google Scholar
Eysel UT, Pape HC, Van Schayck R (1986) Excitatory and differential disinhibitory actions of acetylcholine in the lateral geniculate nucleus of the cat. J Physiol 370:233–254. https://doi.org/10.1113/jphysiol.1986.sp015932
Article CAS PubMed PubMed Central Google Scholar
FitzGibbon T (2002) Organization of reciprocal connections between the perigeniculate nucleus and dorsal lateral geniculate nucleus in the cat: a transneuronal transport study. Vis Neurosci 19:511–520. https://doi.org/10.1017/S0952523802194120
Article CAS PubMed Google Scholar
FitzGibbon T (2006) Does the development of the perigeniculate nucleus support the notion of a hierarchical progression within the visual pathway? Neuroscience 140:529–546. https://doi.org/10.1016/j.neuroscience.2006.02.038
Article CAS PubMed Google Scholar
Friedlander MJ, Lin CS, Stanford LR, Sherman SM (1981) Morphology of functionally identified neurons in lateral geniculate nucleus of the cat. J Neurophysiol 46:80–129. https://doi.org/10.1152/jn.1981.46.1.80
Article CAS PubMed Google Scholar
Fuentes-Santamaria V, Stein BE, McHaffie JG (2006) Neurofilament proteins are preferentially expressed in descending output neurons of the cat the superior colliculus: a study using SMI-32. Neuroscience 138:55–68. https://doi.org/10.1016/j.neuroscience.2005.11.045
Article CAS PubMed Google Scholar
Funke K, Eysel UT (1998) Inverse correlation of firing patterns of single topographically matched perigeniculate neurons and cat dorsal lateral geniculate relay cells. Vis Neurosci 15:711–729. https://doi.org/10.1017/S0952523898154111
Article CAS PubMed Google Scholar
Guido W, Tumosa N, Spear PD (1989) Binocular interactions in the cat’s dorsal lateral geniculate nucleus. I. Spatial-frequency analysis of responses of X, Y, and W cells to nondominant-eye stimulation. J Neurophysiol 62(2):526–543. https://doi.org/10.1152/jn.1989.62.2.526
Article CAS PubMed Google Scholar
Guillery RW, Harting JK (2003) Structure and connections of the thalamic reticular nucleus: advancing views over half a century. J Comp Neurol 463:360–371. https://doi.org/10.1002/cne.10738
Article CAS PubMed Google Scholar
Gutierrez C, Yaun A, Cusick CG (1995) Neurochemical subdivisions of the inferior pulvinar in macaque monkeys. J Comp Neurol 363:545–562. https://doi.org/10.1002/cne.903630404
Article CAS PubMed Google Scholar
Hendry S, Jones E, Hockfield S, McKay R (1988) Neuronal populations stained with the monoclonal antibody Cat-301 in the mammalian cerebral cortex and thalamus. J Neurosci 8:518–542. https://doi.org/10.1523/JNEUROSCI.08-02-00518.1988
Article CAS PubMed PubMed Central Google Scholar
Hirsch JA, Wang X, Sommer FT, Martinez LM (2015) How inhibitory circuits in the thalamus serve vision. Annu Rev Neurosci 38:309–329. https://doi.org/10.1146/annurev-neuro-071013-014229
Article CAS PubMed Google Scholar
Kutcher MR, Duffy KR (2007) Cytoskeleton alteration correlates with gross structural plasticity in the cat lateral geniculate nucleus. Vis Neurosci. 24(6):775–785. https://doi.org/10.1017/S095252380707068X
Kogan CS, Zangenehpour S, Chaudhuri A (2000) Developmental profiles of SMI-32 immunoreactivity in monkey striate cortex. Dev Brain Res 119:85–95. https://doi.org/10.1016/S0165-3806(99)00162-5
Kong J, Tung VWY, Aghajanian J, Xu Z (1998) Antagonistic roles of neurofilament subunits NF-H and NF-M against NF-L in shaping dendritic arborization in spinal motor neurons. J Cell Biol 140:1167–1176. https://doi.org/10.1083/jcb.140.5.1167
Article CAS PubMed PubMed Central Google Scholar
Lawson SN, Waddell PJ (1991) Soma neurofilament immunoreactivity is related to cell size and fibre conduction velocity in rat primary sensory neurons. J Physiol 435:41–63. https://doi.org/10.1113/jphysiol.1991.sp018497
Article CAS PubMed PubMed Central Google Scholar
Lee S-H, Govindaiah G, Cox CL (2007) Heterogeneity of firing properties among rat thalamic reticular nucleus neurons. J Physiol 582:195–208. https://doi.org/10.1113/jphysiol.2007.134254
Article CAS PubMed PubMed Central Google Scholar
Lim E-J, Kim I-B, Oh S-J, Chun M-H (2007) Identification and characterization of SMI32-immunoreactive amacrine cells in the mouse retina. Neurosci Lett 424:199–202. https://doi.org/10.1016/j.neulet.2007.07.046
Article CAS PubMed Google Scholar
Lindström S, Wróbel A (1990) Intracellular recordings from binocularly activated cells in the cat’s dorsal lateral geniculate nucleus. Acta Neurobiol Exp (wars) 50(3):61–70
Merkulyeva N, Mikhalkin A (2021) SMI-32 labeling in Cajal-Retzius cells of feline primary visual cortex. Neurosci Lett 762:136165. https://doi.org/10.1016/j.neulet.2021.136165
Article CAS PubMed Google Scholar
Merkulyeva N, Mikhalkin A, Kostareva A, Vavilova T (2022) Transient neurochemical features of the perigeniculate neurons during early postnatal development of the cat. J Comp Neurol 530:3193–3208. https://doi.org/10.1002/cne.25402
Article CAS PubMed Google Scholar
Mikhalkin A, Nikitina N, Merkulyeva N (2021) Heterochrony of postnatal accumulation of nonphosphorylated heavychain neurofilament by neurons of the cat dorsal lateral geniculate nucleus. J Comp Neurol 529(7):1430–1441. https://doi.org/10.1002/cne.25028
Article CAS PubMed Google Scholar
Mitrofanis J (1992) Calbindin immunoreactivity in a subset of cat thalamic reticular neurons. J Neurocytol 21:495–505. https://doi.org/10.1007/BF01186953
Article CAS PubMed Google Scholar
Mitrofanis J (1994) Development of the thalamic reticular nucleus in ferrets with special reference to the perigeniculate and perireticular cell groups. Eur J Neurosci 6:253–263. https://doi.org/10.1111/j.1460-9568.1994.tb00268.x
Article CAS PubMed Google Scholar
Mundinano IC, Kwan WC, Bourne JA (2015) Mapping the mosaic sequence of primate visual cortical development. Front Neuroanat 9:1–17. https://doi.org/10.3389/fnana.2015.00132
Comments (0)