Transient expression of heavy-chain neurofilaments in the perigeniculate nucleus of cats

Ahlsén G, Lindström S, Lo FS-SS (1982) Functional distinction of perigeniculate and thalamic reticular neurons in the cat. Exp Brain Res 46:118–126. https://doi.org/10.1007/BF00238105

Article  PubMed  Google Scholar 

Bickford ME, Guido W, Godwin DW (1998) Neurofilament proteins in Y-cells of the cat lateral geniculate nucleus: Normal expression and alteration with visual deprivation. J Neurosci 18:6549–6557. https://doi.org/10.1523/JNEUROSCI.18-16-06549.1998

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bickford ME, Wei H, Eisenback MA et al (2008) Synaptic organization of thalamocortical axon collaterals in the perigeniculate nucleus and dorsal lateral geniculate nucleus. J Comp Neurol 508:264–285. https://doi.org/10.1002/cne.21671

Article  CAS  PubMed  PubMed Central  Google Scholar 

Boumil EF, Vohnoutka R, Lee S et al (2018) Assembly and turnover of neurofilaments in growing axonal neurites. Biol Open 7:bio028795. https://doi.org/10.1242/bio.028795

Article  CAS  PubMed  Google Scholar 

Burman KJ, Lui LL, Rosa MG, Bourne JA (2007) Development of non-phosphorylated neurofilament protein expression in neurones of the New World monkey dorsolateral frontal cortex. Eur J Neurosci. 25(6):1767–1779. https://doi.org/10.1111/j.1460-9568.2007.05442.x

Article  PubMed  Google Scholar 

Burnat K, Van Der Gucht E, Waleszczyk WJ et al (2012) Lack of early pattern stimulation prevents normal development of the alpha (Y) retinal ganglion cell population in the cat. J Comp Neurol 520:2414–2429. https://doi.org/10.1002/cne.23045

Article  CAS  PubMed  Google Scholar 

Campbell MJ, Morrison JH (1989) Monoclonal antibody to neurofilament protein (SMI-32) labels a subpopulation of pyramidal neurons in the human and monkey neocortex. J Comp Neurol 282:191–205. https://doi.org/10.1002/cne.902820204

Article  CAS  PubMed  Google Scholar 

Cucchiaro JB, Uhlrich DJ, Sherman SM (1991) Electron-microscopic analysis of synaptic input from the perigeniculate nucleus to the A-laminae of the lateral geniculate nucleus in cats. J Comp Neurol 310:316–336. https://doi.org/10.1002/cne.903100304

Article  CAS  PubMed  Google Scholar 

Daw NW (2014) Visual development, 3rd edn. Springer US, Branford

Book  Google Scholar 

Dubin MW, Cleland BG (1977) Organization of visual inputs to interneurons of lateral geniculate nucleus of the cat. J Neurophysiol 40(2):410–427. https://doi.org/10.1152/jn.1977.40.2.410

Article  CAS  PubMed  Google Scholar 

Eysel UT, Pape HC, Van Schayck R (1986) Excitatory and differential disinhibitory actions of acetylcholine in the lateral geniculate nucleus of the cat. J Physiol 370:233–254. https://doi.org/10.1113/jphysiol.1986.sp015932

Article  CAS  PubMed  PubMed Central  Google Scholar 

FitzGibbon T (2002) Organization of reciprocal connections between the perigeniculate nucleus and dorsal lateral geniculate nucleus in the cat: a transneuronal transport study. Vis Neurosci 19:511–520. https://doi.org/10.1017/S0952523802194120

Article  CAS  PubMed  Google Scholar 

FitzGibbon T (2006) Does the development of the perigeniculate nucleus support the notion of a hierarchical progression within the visual pathway? Neuroscience 140:529–546. https://doi.org/10.1016/j.neuroscience.2006.02.038

Article  CAS  PubMed  Google Scholar 

Friedlander MJ, Lin CS, Stanford LR, Sherman SM (1981) Morphology of functionally identified neurons in lateral geniculate nucleus of the cat. J Neurophysiol 46:80–129. https://doi.org/10.1152/jn.1981.46.1.80

Article  CAS  PubMed  Google Scholar 

Fuentes-Santamaria V, Stein BE, McHaffie JG (2006) Neurofilament proteins are preferentially expressed in descending output neurons of the cat the superior colliculus: a study using SMI-32. Neuroscience 138:55–68. https://doi.org/10.1016/j.neuroscience.2005.11.045

Article  CAS  PubMed  Google Scholar 

Funke K, Eysel UT (1998) Inverse correlation of firing patterns of single topographically matched perigeniculate neurons and cat dorsal lateral geniculate relay cells. Vis Neurosci 15:711–729. https://doi.org/10.1017/S0952523898154111

Article  CAS  PubMed  Google Scholar 

Guido W, Tumosa N, Spear PD (1989) Binocular interactions in the cat’s dorsal lateral geniculate nucleus. I. Spatial-frequency analysis of responses of X, Y, and W cells to nondominant-eye stimulation. J Neurophysiol 62(2):526–543. https://doi.org/10.1152/jn.1989.62.2.526

Article  CAS  PubMed  Google Scholar 

Guillery RW, Harting JK (2003) Structure and connections of the thalamic reticular nucleus: advancing views over half a century. J Comp Neurol 463:360–371. https://doi.org/10.1002/cne.10738

Article  CAS  PubMed  Google Scholar 

Gutierrez C, Yaun A, Cusick CG (1995) Neurochemical subdivisions of the inferior pulvinar in macaque monkeys. J Comp Neurol 363:545–562. https://doi.org/10.1002/cne.903630404

Article  CAS  PubMed  Google Scholar 

Hendry S, Jones E, Hockfield S, McKay R (1988) Neuronal populations stained with the monoclonal antibody Cat-301 in the mammalian cerebral cortex and thalamus. J Neurosci 8:518–542. https://doi.org/10.1523/JNEUROSCI.08-02-00518.1988

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hirsch JA, Wang X, Sommer FT, Martinez LM (2015) How inhibitory circuits in the thalamus serve vision. Annu Rev Neurosci 38:309–329. https://doi.org/10.1146/annurev-neuro-071013-014229

Article  CAS  PubMed  Google Scholar 

Kutcher MR, Duffy KR (2007) Cytoskeleton alteration correlates with gross structural plasticity in the cat lateral geniculate nucleus. Vis Neurosci. 24(6):775–785. https://doi.org/10.1017/S095252380707068X

Article  PubMed  Google Scholar 

Kogan CS, Zangenehpour S, Chaudhuri A (2000) Developmental profiles of SMI-32 immunoreactivity in monkey striate cortex. Dev Brain Res 119:85–95. https://doi.org/10.1016/S0165-3806(99)00162-5

Article  CAS  Google Scholar 

Kong J, Tung VWY, Aghajanian J, Xu Z (1998) Antagonistic roles of neurofilament subunits NF-H and NF-M against NF-L in shaping dendritic arborization in spinal motor neurons. J Cell Biol 140:1167–1176. https://doi.org/10.1083/jcb.140.5.1167

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lawson SN, Waddell PJ (1991) Soma neurofilament immunoreactivity is related to cell size and fibre conduction velocity in rat primary sensory neurons. J Physiol 435:41–63. https://doi.org/10.1113/jphysiol.1991.sp018497

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lee S-H, Govindaiah G, Cox CL (2007) Heterogeneity of firing properties among rat thalamic reticular nucleus neurons. J Physiol 582:195–208. https://doi.org/10.1113/jphysiol.2007.134254

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lim E-J, Kim I-B, Oh S-J, Chun M-H (2007) Identification and characterization of SMI32-immunoreactive amacrine cells in the mouse retina. Neurosci Lett 424:199–202. https://doi.org/10.1016/j.neulet.2007.07.046

Article  CAS  PubMed  Google Scholar 

Lindström S, Wróbel A (1990) Intracellular recordings from binocularly activated cells in the cat’s dorsal lateral geniculate nucleus. Acta Neurobiol Exp (wars) 50(3):61–70

PubMed  Google Scholar 

Merkulyeva N, Mikhalkin A (2021) SMI-32 labeling in Cajal-Retzius cells of feline primary visual cortex. Neurosci Lett 762:136165. https://doi.org/10.1016/j.neulet.2021.136165

Article  CAS  PubMed  Google Scholar 

Merkulyeva N, Mikhalkin A, Kostareva A, Vavilova T (2022) Transient neurochemical features of the perigeniculate neurons during early postnatal development of the cat. J Comp Neurol 530:3193–3208. https://doi.org/10.1002/cne.25402

Article  CAS  PubMed  Google Scholar 

Mikhalkin A, Nikitina N, Merkulyeva N (2021) Heterochrony of postnatal accumulation of nonphosphorylated heavychain neurofilament by neurons of the cat dorsal lateral geniculate nucleus. J Comp Neurol 529(7):1430–1441. https://doi.org/10.1002/cne.25028

Article  CAS  PubMed  Google Scholar 

Mitrofanis J (1992) Calbindin immunoreactivity in a subset of cat thalamic reticular neurons. J Neurocytol 21:495–505. https://doi.org/10.1007/BF01186953

Article  CAS  PubMed  Google Scholar 

Mitrofanis J (1994) Development of the thalamic reticular nucleus in ferrets with special reference to the perigeniculate and perireticular cell groups. Eur J Neurosci 6:253–263. https://doi.org/10.1111/j.1460-9568.1994.tb00268.x

Article  CAS  PubMed  Google Scholar 

Mundinano IC, Kwan WC, Bourne JA (2015) Mapping the mosaic sequence of primate visual cortical development. Front Neuroanat 9:1–17. https://doi.org/10.3389/fnana.2015.00132

Article  CAS 

Comments (0)

No login
gif