Abedi T, Mojiri A (2020) Cadmium uptake by wheat (Triticum aestivum L.): An overview. Plants 9(4):500
Article CAS PubMed PubMed Central Google Scholar
Agrawal GK, Agrawal SK, Shibato J et al (2003) Novel rice MAP kinases OsMSRMK3 and OsWJUMK1 involved in encountering diverse environmental stresses and developmental regulation. Biochem Biophys Res Commun. 300(3):775–83. https://doi.org/10.1016/s0006-291x(02)02868-1
Article CAS PubMed Google Scholar
Agarwal P, Mitra M, Banerjee S, Roy S (2020) MYB4 transcription factor, a member of R2R3-subfamily of MYB domain protein, regulates cadmium tolerance via enhanced protection against oxidative damage and increases expression of PCS1 and MT1C in Arabidopsis. Plant Sci. https://doi.org/10.1016/j.plantsci.2020.110501
Ahmad P, Rasool S, Gul A et al (2016) Jasmonates: Multifunctional roles in stress tolerance. Front Plant Sci 7:813
Article PubMed PubMed Central Google Scholar
Argüello JM, Eren E, González-Guerrero M (2007) The structure and function of heavy metal transport P1B-ATPases. Biometals 20:233–248
Asai T, Tena G, Plotnikova J et al (2002) Map kinase signalling cascade in Arabidopsis innate immunity. Nature. https://doi.org/10.1038/415977a
Asai S, Ohta K, Yoshioka H (2008) MAPK signaling regulates nitric oxide and NADPH oxidase-dependent oxidative bursts in Nicotiana Benthamiana. Plant Cell. https://doi.org/10.1105/tpc.107.055855
Article PubMed PubMed Central Google Scholar
Assunção AGL, Da CostaMartins P, De Folter S et al (2001) Elevated expression of metal transporter genes in three accessions of the metal hyperaccumulator Thlaspi caerulescens. Plant Cell Environ. https://doi.org/10.1046/j.1365-3040.2001.00666.x
Balasundaram U, Venkataraman G, George S, Parida A (2014) Metallothioneins from a Hyperaccumulating Plant Prosopis juliflora Show difference in Heavy Metal Accumulation in Transgenic Tobacco. Int J Agric Environ Biotechnol. https://doi.org/10.5958/2230-732x.2014.00240.x
Bashir S, Zhu J, Fu Q, Hu H (2018) Cadmium mobility, uptake and anti-oxidative response of water spinach (Ipomoea aquatic) under rice straw biochar, zeolite and rock phosphate as amendments. Chemosphere. https://doi.org/10.1016/j.chemosphere.2017.11.162
Bashri G, Singh S, Prasad SM et al (2021) Kinetin mitigates Cd-induced damagesto growth, photosynthesis and PS II photochemistry of Trigonella seedlings by up-regulating ascorbate-glutathione cycle. PLoS ONE. https://doi.org/10.1371/journal.pone.0249230
Article PubMed PubMed Central Google Scholar
Bughio N, Yamaguchi H, Nishizawa NK et al (2002) Cloning an iron-regulated metal transporter from rice. J Exp Bot. https://doi.org/10.1093/jxb/erf004
Cabot C, Gallego B, Martos S et al (2013) Signal cross talk in Arabidopsis exposed to cadmium, silicon, and Botrytis cinerea. Planta. https://doi.org/10.1007/s00425-012-1779-7
Cai SY, Zhang Y, Xu YP et al (2017) HsfA1a upregulates melatonin biosynthesis to confer cadmium tolerance in tomato plants. J Pineal Res. https://doi.org/10.1111/jpi.12387
Cai Z, Xian P, Wang H et al (2020a) Transcription factor GmWRKY142 confers cadmium resistance by Up-Regulating the cadmium tolerance 1-Like genes. Front Plant Sci. https://doi.org/10.3389/fpls.2020.00724
Article PubMed PubMed Central Google Scholar
Cai Z, Xian P, Lin R et al (2020b) Characterization of the soybean GmIREG family genes and the function of GmIREG3 in conferring tolerance to aluminum stress. Int J Mol Sci. 21(2):497. https://doi.org/10.3390/ijms21020497
Article CAS PubMed PubMed Central Google Scholar
Cailliatte R, Schikora A, Briat JF et al (2010) High-affinity manganese uptake by the metal transporter nramp1 is essential for Arabidopsis growth in low manganese conditions. Plant Cell. https://doi.org/10.1105/tpc.109.073023
Article PubMed PubMed Central Google Scholar
Chang JD, Huang S, Yamaji N et al (2020) OsNRAMP1 transporter contributes to cadmium and manganese uptake in rice. Plant Cell Environ. https://doi.org/10.1111/pce.13843
Chen YH, Wu XM, Ling HQ, Yang WC (2006) Transgenic expression of DwMYB2 impairs iron transport from root to shoot in Arabidopsis thaliana. Cell Res. https://doi.org/10.1038/sj.cr.7310099
Chen H, Zhang W, Yang X et al (2018) Effective methods to reduce cadmium accumulation in rice grain. Chemosphere. https://doi.org/10.1016/j.chemosphere.2018.05.143
Article PubMed PubMed Central Google Scholar
Chen S, Yu M, Li H et al (2020) SaHsfA4c from sedum alfredii hance enhances cadmium tolerance by regulating ROS-scavenger activities and heat shock proteins expression. Front Plant Sci. https://doi.org/10.3389/fpls.2020.00142
Article PubMed PubMed Central Google Scholar
Choong G, Liu Y, Templeton DM (2014) Interplay of calcium and cadmium in mediating cadmium toxicity. Chem Biol Interact 211:54–65
Article CAS PubMed Google Scholar
Choppala G, Saifullah, Bolan N et al (2014) Cellular mechanisms in higher plants governing tolerance to cadmium toxicity. CRC Crit Rev Plant Sci. https://doi.org/10.1080/07352689.2014.903747
Clemens S (2006) Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie 88(11):1707–1719
Article CAS PubMed Google Scholar
Cobbett CS (2000) Phytochelatins and their roles in heavy metal detoxification. Plant Physiol. 123(3):825–832
Article CAS PubMed PubMed Central Google Scholar
Costa G, Morel JL (1994) Water relations, gas exchange and amino acid content in Cd-treated lettuce. Plant Physiol Biochem 32(4):561–570
Dai HP, Wei Y, Zhang Y et al (2012) Influence of photosynthesis and chlorophyll synthesis on cd accumulation in Populus×canescens. J Food, Agric Environ
Dang F, Lin J, Chen Y et al (2019) A feedback loop between CaWRKY41 and H 2 O 2 coordinates the response to Ralstonia solanacearum and excess cadmium in pepper. J Exp Bot. https://doi.org/10.1093/jxb/erz006
Article PubMed PubMed Central Google Scholar
Dayod M, Tyerman SD, Leigh RA, Gilliham M (2010) Calcium storage in plants and the implications for calcium biofortification. Protoplasma 247:215–231
Article CAS PubMed Google Scholar
de la Torre F, Gutiérrez-Beltrán E, Pareja-Jaime Y et al (2013) The tomato calcium sensor Cbl10 and its interacting protein kinase cipk6 define a signaling pathway in plant immunity. Plant Cell. https://doi.org/10.1105/tpc.113.113530
Article PubMed PubMed Central Google Scholar
Di Sanità L, Gabbrielli R (1999) Response to cadmium in higher plants. Environ Exp Bot 41(2):105–130
DiDonato RJ, Roberts LA, Sanderson T et al (2004) Arabidopsis Yellow Stripe-Like2 (YSL2): a metal-regulated gene encoding a plasma membrane transporter of nicotianamine-metal complexes. Plant J. https://doi.org/10.1111/j.1365-313X.2004.02128.x
Du J, Yang JL, Li CH (2012) Advances in metallotionein studies in forest trees. Plant Omics 5(1):46–51
Ellis PD, Strang P, Potter JD (1984) Cadmium-substituted skeletal troponin C. Cadmium-113 NMR spectroscopy and metal binding investigations. J Biol Chem. https://doi.org/10.1016/s0021-9258(18)90971-3
Emamverdian A, Ding Y, Xie Y (2020) The role of new members of phytohormones in plant amelioration under abiotic stress with an emphasis on heavy metals. Polish J Environ 29:1009–1020
Farinati S, DalCorso G, Varotto S, Furini A (2010) The Brassica juncea BjCdR15, an ortholog of Arabidopsis TGA3, is a regulator of cadmium uptake, transport and accumulation in shoots and confers cadmium tolerance in transgenic plants. New Phytol. https://doi.org/10.1111/j.1469-8137.2009.03132.x
Fu S, Lu Y, Zhang X et al (2019) The ABC transporter ABCG36 is required for cadmium tolerance in rice. J Exp Bot. https://doi.org/10.1093/jxb/erz335
Article PubMed PubMed Central Google Scholar
Garg N, Bhandari P (2014) Cadmium toxicity in crop plants and its alleviation by arbuscular mycorrhizal (AM) fungi: An overview. Plant Biosyst. https://doi.org/10.1080/11263504.2013.788096
Garnier L, Simon-Plas F, Thuleau P et al (2006) Cadmium affects Tobacco cells by a series of three waves of reactive oxygen species that contribute to cytotoxicity. Plant Cell Environ. https://doi.org/10.1111/j.1365-3040.2006.01571.x
Comments (0)