Baschat A, Chmait RH, Deprest J, Gratacós E, Hecher K, Kontopoulos E, Quintero R, Skupski DW, Valsky DV, Ville Y (2011) Twin-to-twin transfusion syndrome (TTTS). J Perinat Med 39(2):107–112
Lewi L, Deprest J, Hecher K (2013) The vascular anastomoses in monochorionic twin pregnancies and their clinical consequences. Am J Obstet Gynecol 208:19–30
Beck V, Lewi P, Gucciardo L, Devlieger R (2012) Preterm prelabor rupture of membranes and fetal survival after minimally invasive fetal surgery: a systematic review of the literature. Fetal Diagn Ther 31(1):1–9
Cincotta R, Kumar S (2016) Future directions in the management of twin-to-twin transfusion syndrome. Twin Res Hum Genet 19(3):285–291
Lopriore E, Middeldorp JM, Oepkes D, Klumper FJ, Walther FJ, Vandenbussche FPHA (2007) Residual anastomoses after fetoscopic laser surgery in twin-to-twin transfusion syndrome: frequency, associated risks and outcome. Placenta 28(2–3):204–208
Article PubMed CAS Google Scholar
Maier-Hein L, Eisenmann M, Sarikaya D, März K, Collins T, Malpani A, Fallert J, Feussner H, Giannarou S, Mascagni P et al (2022) Surgical data science-from concepts toward clinical translation. Med Image Anal 76:102306
Bano S, Casella A, Vasconcelos F, Qayyum A, Benzinou A, Mazher M, Meriaudeau F, Lena C, Cintorrino IA, Paolis GRD, Biagioli J, Grechishnikova D, Jiao J, Bai B, Qiao Y, Bhattarai B, Gaire RR, Subedi R, Vazquez E, Plotka S, Lisowska A, Sitek A, Attilakos G, Wimalasundera R, David AL, Paladini D, Deprest J, Momi ED, Mattos LS, Moccia S, Stoyanov D (2023) Placental vessel segmentation and registration in fetoscopy: literature review and MICCAI FetReg2021 challenge findings
Bano S, Vasconcelos F, Tella-Amo M, Dwyer G, Gruijthuijsen C, Vander Poorten E, Vercauteren T, Ourselin S, Deprest J, Stoyanov D (2020) Deep learning-based fetoscopic mosaicking for field-of-view expansion. Int J Comput Assist Radiol Surg 15(11):1807–1816
Article PubMed PubMed Central Google Scholar
Jalili J, Hejazi SM, Riazi-Esfahani M, Eliasi A, Ebrahimi M, Seydi M, Fard MA, Ahmadian A (2020) Retinal image mosaicking using scale-invariant feature transformation feature descriptors and Voronoi diagram. J Med Imaging 7(4):044001–044001
Behrens A, Bommes M, Stehle T, Gross S, Leonhardt S, Aach T (2011) Real-time image composition of bladder mosaics in fluorescence endoscopy. Comput Sci-Res Dev 26:51–64
Du P, Zhou Y, Xing Q, Hu X (2011) Improved sift matching algorithm for 3d reconstruction from endoscopic images. In: Proceedings of the 10th international conference on virtual reality continuum and its applications in industry, pp 561–564
Liu Y, Tian J, Hu R, Yang B, Liu S, Yin L, Zheng W (2022) Improved feature point pair purification algorithm based on sift during endoscope image stitching. Front Neurorobot 16:840594
Article PubMed PubMed Central Google Scholar
Daga P, Chadebecq F, Shakir DI, Herrera LCG, Tella M, Dwyer G, David AL, Deprest J, Stoyanov D, Vercauteren T, Ourselin S (2016) Real-time mosaicing of fetoscopic videos using SIFT. In: Medical imaging 2016: image-guided procedures, robotic interventions, and modeling, vol 9786. International Society for Optics and Photonics, p 97861
Reeff M, Gerhard F, Cattin P, Gábor S (2006) Mosaicing of endoscopic placenta images. INFORMATIK
Bano S, Vasconcelos F, Shepherd LM, Vander Poorten E, Vercauteren T, Ourselin S, David AL, Deprest J, Stoyanov D (2020) Deep placental vessel segmentation for fetoscopic mosaicking. In: International conference on medical image computing and computer-assisted intervention. Springer, pp 763–773
Peter L, Tella-Amo M, Shakir DI, Attilakos G, Wimalasundera R, Deprest J, Ourselin S, Vercauteren T (2018) Retrieval and registration of long-range overlapping frames for scalable mosaicking of in vivo fetoscopy. Int J Comput Assist Radiol Surg 13(5):713–720
Article PubMed PubMed Central Google Scholar
Gaisser F, Peeters SH, Lenseigne BA, Jonker PP, Oepkes D (2018) Stable image registration for in-vivo fetoscopic panorama reconstruction. J Imaging 4(1):24
Bano S, Vasconcelos F, Amo MT, Dwyer G, Gruijthuijsen C, Deprest J, Ourselin S, Vander Poorten E, Vercauteren T, Stoyanov D (2019) Deep sequential mosaicking of fetoscopic videos. In: International conference on medical image computing and computer-assisted intervention. Springer, pp 311–319
Alabi O, Bano S, Vasconcelos F, David AL, Deprest J, Stoyanov D (2022) Robust fetoscopic mosaicking from deep learned flow fields. Int J Comput Assist Radiol Surg 17:1125–1134
Article PubMed PubMed Central Google Scholar
Shah STH, Xuezhi X (2021) Traditional and modern strategies for optical flow: an investigation. SN Appl Sci. https://doi.org/10.1007/s42452-021-04227-x
Simo-Serra E, Trulls E, Ferraz L, Kokkinos I, Fua P, Moreno-Noguer F (2015) Discriminative learning of deep convolutional feature point descriptors. In: Proceedings of the IEEE international conference on computer vision, pp 118–126
Tian Y, Fan B, Wu F (2017) L2-net: deep learning of discriminative patch descriptor in Euclidean space. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 661–669
Luo Z, Shen T, Zhou L, Zhu S, Zhang R, Yao Y, Fang T, Quan L (2018) Geodesc: learning local descriptors by integrating geometry constraints. In: Proceedings of the European conference on computer vision (ECCV), pp 168–183
Mur-Artal R, Montiel JMM, Tardós JD (2015) ORB-SLAM: a versatile and accurate monocular slam system. IEEE Trans Rob 31(5):1147–1163. https://doi.org/10.1109/TRO.2015.2463671
DeTone D, Malisiewicz T, Rabinovich A (2018) Superpoint: self-supervised interest point detection and description. In: IEEE conference on computer vision and pattern recognition, pp 224–236
Farhat M, Chaabouni-Chouayakh H, Ben-Hamadou A (2023) Self-supervised endoscopic image key-points matching. Expert Syst Appl 213:118696. https://doi.org/10.1016/j.eswa.2022.118696
Azizi S, Mustafa B, Ryan F, Beaver Z, Freyberg J, Deaton J, Loh A, Karthikesalingam A, Kornblith S, Chen T, et al (2021) Big self-supervised models advance medical image classification. In: Proceedings of the IEEE/CVF international conference on computer vision, pp 3478–3488
Lin T-Y, Maire M, Belongie S, Hays J, Perona P, Ramanan D, Dollár P, Zitnick CL (2014) Microsoft coco: common objects in context. In: Fleet D, Pajdla T, Schiele B, Tuytelaars T (eds) European conference on computer vision. Springer, Cham, pp 740–755
Ahmad MA, Ourak M, Gruijthuijsen C, Deprest J, Vercauteren T, Poorten EV (2020) Deep learning-based monocular placental pose estimation: towards collaborative robotics in fetoscopy. Int J Comput-Assist Radiol Surg 15(9):1561–1571
Article PubMed PubMed Central Google Scholar
Casella A, Moccia S, Paladini D, Frontoni E, De Momi E, Mattos LS (2021) A shape-constraint adversarial framework with instance-normalized spatio-temporal features for inter-fetal membrane segmentation. Med Image Anal 70:102008
Mertens T, Kautz J, Van Reeth F (2007) Exposure fusion. In: 15th Pacific conference on computer graphics and applications, pp 382–390
Liu X, Zheng Y, Killeen B, Ishii M, Hager GD, Taylor RH, Unberath M (2020) Extremely dense point correspondences using a learned feature descriptor. In: IEEE/CVF conference on computer vision and pattern recognition, pp 4846–4855. https://doi.org/10.1109/CVPR42600.2020.00490
Li L, Bano S, Deprest J, David AL, Stoyanov D, Vasconcelos F (2021) Globally optimal fetoscopic mosaicking based on pose graph optimisation with affine constraints. IEEE Robot Autom Lett 6(4):7831–7838
Reinke A, Eisenmann M, Tizabi MD, Sudre CH, Rädsch T, Antonelli M, Arbel T, Bakas S, Cardoso MJ, Cheplygina V, et al (2021) Common limitations of performance metrics in biomedical image analysis. In: Medical imaging with deep learning
Reinke A, Maier-Hein L, Christodoulou E, Glocker B, Scholz P, Isensee F, Kleesiek J, Kozubek M, Reyes M, Riegler MA, et al (2022) Metrics reloaded-a new recommendation framework for biomedical image analysis validation. In: Medical imaging with deep learning
Comments (0)