Abu-Arqub O, El-Ajou A, Momani S, Shawagfeh N (2013) Analytical solutions of fuzzy initial value problems by HAM. Appl Math Inf Sci 7:1903–1919. https://doi.org/10.12785/amis/070528
Alsharo DM, Jameel AF, Alomari AK et al (2019) New semi-analytical method for solving two point nth order fuzzy boundary value problem. Int J Math Model Numer Optim 9:12. https://doi.org/10.1504/IJMMNO.2019.10017923
Arancio O et al (2017) Calcium hypothesis of Alzheimer’s disease and brain aging: a framework for integrating new evidence into a comprehensive theory of pathogenesis. Alzheimers Dement 13:178-182.e17. https://doi.org/10.1016/j.jalz.2016.12.006
Bailey PB, Shampine LF (1969) Existence from uniqueness for two point boundary value problems. J Math Anal Appl 25(3):569–574. https://doi.org/10.1016/0022-247X(69)90256-X
Bede B (2006) A note on “two-point boundary value problems associated with non-linear fuzzy differential equations.” Fuzzy Sets Syst 157:986–989. https://doi.org/10.1016/j.fss.2005.09.006
Bede B, Stefanini L (2011) Solution of fuzzy differential equations with generalized differentiability using LU-parametric representation. In: Proceedings of the 7th conference of the European Society for Fuzzy Logic and Technology (EUSFLAT-2011). Atlantis Press, Paris, France: https://doi.org/10.2991/eusflat.2011.106
Bede B, Stefanini L (2013) Generalized differentiability of fuzzy-valued functions. Fuzzy Sets Syst 230:119–141. https://doi.org/10.1016/j.fss.2012.10.003
Bellotti R, Pascazio S (2012) Editorial: advanced physical methods in brain research. Eur Phys J Plus 127:145. https://doi.org/10.1140/epjp/i2012-12145-4
Berridge MJ (2013) Dysregulation of neural calcium signaling in Alzheimer disease, bipolar disorder and schizophrenia. Prion 7(1):2–13. https://doi.org/10.4161/pri.21767
Article CAS PubMed PubMed Central Google Scholar
Bertram R, Gram Pedersen M, Luciani DS, Sherman A (2006) A simplified model for mitochondrial ATP production. J Theor Biol 243:575–586. https://doi.org/10.1016/j.jtbi.2006.07.019
Article CAS PubMed Google Scholar
Black C, Black C (2005) Student solutions manual to accompany Elementary linear algebra with applications, 9th ed. Wiley
Bojarski L, Herms J, Kuznicki J (2008) Calcium dysregulation in Alzheimer’s disease. Neurochem Int 52:621–633. https://doi.org/10.1016/j.neuint.2007.10.002
Article CAS PubMed Google Scholar
Brawek B, Garaschuk O (2014) Network-wide dysregulation of calcium homeostasis in Alzheimer’s disease. Cell Tissue Res 357:427–438. https://doi.org/10.1007/s00441-014-1798-8
Article CAS PubMed Google Scholar
Buckley JJ, Eslami E, Feuring T (2002) Fuzzy differential equations. In: Part of the studies in fuzziness and soft computing book series STUDFUZZ, Chapter 7, vol. 91. pp 145–163
Buckley JJ, Feuring T (2001) Fuzzy initial value problem for th-order linear differential equations. Fuzzy Sets Syst 121:247–255. https://doi.org/10.1016/S0165-0114(00)00028-2
Dave DD, Jha BK (2018) Analytically depicting the calcium diffusion for Alzheimer’s affected cell. Int J Biomathema 11(7):1850088. https://doi.org/10.1142/S1793524518500882
Dave DD, Jha BK (2020) 3D mathematical modeling of calcium signaling in Alzheimer’s disease. Netw Model Anal Health Inform Bioinforma 9:1. https://doi.org/10.1007/s13721-019-0207-3
Dave DD, Jha BK (2021) Mathematical modeling of calcium oscillatory patterns in a neuron. Interdiscip Sci 13:12–24. https://doi.org/10.1007/s12539-020-00401-8
Article CAS PubMed Google Scholar
Dave DD, Jha BK (2023) Finite element technique to explicate calcium diffusion in Alzheimer’s disease, 1st edn. In: Computational and analytic methods in biological sciences. River Publisher, pp 22
De Young GW, Keizer J (1992) A single-pool inositol 1,4,5-trisphosphate-receptor-based model for agonist-stimulated oscillations in Ca2+ concentration. Proc Natl Acad Sci 89:9895–9899. https://doi.org/10.1073/pnas.89.20.9895
Article PubMed PubMed Central Google Scholar
Gasilov NA, Amrahov SE, Fatullayev AG (2011) A geometric approach to solve fuzzy linear systems of differential equations. Appl Math Inf Sci 5:484–495
Gasilov NA, Hashimoglu IF, Amrahov SE, Fatullayev AG (2012) A new approach to non-homogeneous fuzzy initial value problem. Comput Model Eng Sci (CMES) 85(4):367–378
Gasilov N, Amrahov ŞE, Fatullayev AG (2014) Solution of linear differential equations with fuzzy boundary values. Fuzzy Sets Syst 257:169–183. https://doi.org/10.1016/j.fss.2013.08.008
Goetschel R, Voxman W (1986) Elementary fuzzy calculus. Fuzzy Sets Syst 18:31–43. https://doi.org/10.1016/0165-0114(86)90026-6
Hüllermeier E (1997) An approach to modelling and simulation of uncertain dynamical systems. Int J Unc Fuzz Knowl Based Syst 05:117–137. https://doi.org/10.1142/S0218488597000117
Jameel AF, Shather AH, Anakira NR et al (2020) Comparison for the approximate solution of the second-order fuzzy nonlinear differential equation with fuzzy initial conditions. Math Stat 8:527–534. https://doi.org/10.13189/ms.2020.080505
Jha A, Adlakha N (2014) Finite element model to study the effect of exogenous buffer on calcium dynamics in dendritic spines. Int J Model Simul Sci Comput 5(2):1350027. https://doi.org/10.1142/S179396231350027X
Jha N, Kritika (2023) Approximate analytic solution for tumour growth and human head heat distribution singular boundary value model by high-resolution order-preserving fuzzy transform: eBook ISBN9781003393238
Jha BK, Adlakha N, Mehta MN (2012) Finite element model to study calcium diffusion in astrocytes. Int J Pure Appl Math 78: ISSN: 1311–8080
Jha BK, Adlakha N, Mehta MN (2013) Two-dimensional finite element model to study calcium distribution in astrocytes in presence of VGCC and excess buffer. Int J Model Simul Sci Comput 4(2):1250030. https://doi.org/10.1142/S1793962312500304
Jha BK, Adlakha N, Mehta MN (2014) Two-dimensional finite element model to study calcium distribution in astrocytes in presence of excess buffer. Int J Biomathema 7(3):1450031. https://doi.org/10.1142/S1793524514500314
Jha BK, Joshi H, Dave DD (2018) Portraying the effect of calcium-binding proteins on cytosolic calcium concentration distribution fractionally in nerve cells. Interdiscip Sci 10:674–685. https://doi.org/10.1007/s12539-016-0202-7
Article CAS PubMed Google Scholar
Joshi H, Jha BK (2020) Fractional-order mathematical model for calcium distribution in nerve cells. Comput Appl Math 39:56. https://doi.org/10.1007/s40314-020-1082-3
Joshi H, Jha BK (2022) 2D dynamic analysis of the disturbances in the calcium neuronal model and its implications in neurodegenerative disease. Cogn Neurodyn. https://doi.org/10.1007/s11571-022-09903-1
Joshi H, Jha BK, Dave DD (2018) Mathematical model to study the effect of mitochondria on Ca2+ diffusion in Parkinsonic nerve cells. In: AIP Conference Proceedings, vol. 1975. AIP Publishing. https://doi.org/10.1063/1.5042183
Kaleva O (1987) Fuzzy differential equations. Fuzzy Sets Syst 24:301–317. https://doi.org/10.1016/0165-0114(87)90029-7
Kaleva O (1990) The cauchy problem for fuzzy differential equations. Fuzzy Sets Syst 35:389–396. https://doi.org/10.1016/0165-0114(90)90010-4
Keener J, Sneyd J (eds) (2009) Mathematical Physiology. Springer, New York
Khastan A, Nieto JJ (2010) A boundary value problem for second order fuzzy differential equations. Nonlinear Anal Theory Methods Appl 72:3583–3593. https://doi.org/10.1016/j.na.2009.12.038
Kothiya A, Adlakha N (2023) Simulation of biochemical dynamics of Ca2+ and PLC in fibroblast cell. J Bioenerg Biomembr 55:267–287. https://doi.org/10.1007/s10863-023-09976-5
Article CAS PubMed Google Scholar
L. Glass JDM, R. V. Kohn, SS Sastry PSK (2002) Interdisciplinary Applied Mathematics, Third. Springer, New York Berlin Heidelberg
LaFerla FM (2002) Calcium dyshomeostasis and intracellular signalling in alzheimer’s disease. Nat Rev Neurosci 3:862–872. https://doi.org/10.1038/nrn960
Article CAS PubMed Google Scholar
Liao S (2005) Comparison between the homotopy analysis method and homotopy perturbation method. Appl Math Comput 169:1186–1194. https://doi.org/10.1016/j.amc.2004.10.058
Liao S (2006) Series solutions of unsteady boundary-layer flows over a stretching flat plate. Stud Appl Math 117:239–263. https://doi.org/10.1111/j.1467-9590.2006.00354.x
Liao Y, Dong Y, Cheng J (2017) The function of the mitochondrial calcium uniporter in neurodegenerative disorders. Int J Mol Sci 18(2):248. https://doi.org/10.3390/ijms18020248
Article CAS PubMed PubMed Central Google Scholar
Magi S, Castaldo P, MacRi ML et al (2016) Intracellular calcium dysregulation: implications for Alzheimer’s disease. Biomed Res Int 14. https://doi.org/10.1155/2016/6701324
Manhas N, Pardasani KR (2014) Mathematical model to study IP3 dynamics dependent calcium oscillations in pancreatic acinar cells. J Med Imaging Health Inform 4(6):874–880. https://doi.org/10.1166/jmihi.2014.1333
Mishra V, Adlakha N (2023) Spatio temporal interdependent calcium and buffer dynamics regulating DAG in a hepatocyte cell due to obesity. J Bioenerg Biomembr 55:249–266. https://doi.org/10.1007/s10863-023-09973-8
Article CAS PubMed Google Scholar
Muzzioli S, Reynaerts H (2006) Fuzzy linear systems of the form A1x + b1 = A 2x + b2. Fuzzy Sets Syst 157:939–951. https://doi.org/10.1016/j.fss.2005.09.005
Naik PA, Pardasani KR (2019) Three-dimensional finite element model to study effect of RyR calcium channel, ER leak and SERCA pump on calcium distribution in Oocyte Cell. Int J Comput Methods 16:1850091. https://doi.org/10.1142/S0219876218500913
Nieto JJ, Rodríguez-López R, Villanueva-Pesqueira M (2011) Exact solution to the periodic boundary value problem for a first-order linear fuzzy differential equation with impulses. Fuzzy Optim Decis Making 10:323–339. https://doi.org/10.1007/s10700-011-9108-3
O’Regan D, Lakshmikantham V, Nieto JJ (2003) Initial and boundary value problems for fuzzy differential equations. Nonlinear Anal Theory Methods Appl 54:405–415. https://doi.org/10.1016/S0362-546X(03)00097-X
Pathak K, Adlakha N (2016) Finite element model to study two dimensional unsteady state calcium distribution in cardiac myocytes. Alexandria J Med 52:261–268. https://doi.org/10.1016/j.ajme.2015.09.007
Comments (0)