Regulation of Metabolism and the Role of Redox Factors in the Energy Control of Quiescence and Proliferation of Hematopoietic Cells

Kaushansky K. 2006. Lineage-specific hematopoietic growth factors. N. Engl. J. Med. 354 (19), 2034–2045.

Article  CAS  PubMed  Google Scholar 

Doulatov S., Notta F., Laurenti E., Dick J.E. 2012. Hematopoiesis: A human perspective. Cell Stem Cell. 10 (2), 120–136.

Article  CAS  PubMed  Google Scholar 

Watson C.J., Papula A.L., Poon G.Y.P., Wong W.H., Young A.L., Druley T.E., Fisher D.S., Blundell J.R. 2020. The evolutionary dynamics and fitness landscape of clonal hematopoiesis. Science. 367 (6485), 1449–1454.

Article  CAS  PubMed  Google Scholar 

Cheshier S.H., Morrison S.J., Liao X., Weissman I.L. 1999. In vivo proliferation and cell cycle kinetics of long-term self-renewing hematopoietic stem cells. Proc. Natl. Acad. Sci. U. S. A. 96 (6), 3120–3125.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cheng T., Rodrigues N., Shen H., Yang Y.G., Dombkowski D., Sykes M., Scadden D.T. 2000. Hematopoietic stem cell quiescence maintained by p21cip1/waf1. Science. 287 (5459), 1804–1809.

Article  CAS  PubMed  Google Scholar 

Yamamoto R., Morita Y., Ooehara J., Hamanaka S., Onodera M., Rudolph K.L., Ema H., Nakauchi H. 2013. Clonal analysis unveils self-renewing lineage-restricted progenitors generated directly from hematopoietic stem cells. Cell. 154 (5).

Höfer T., Rodewald H.R. 2018. Differentiation-based model of hematopoietic stem cell functions and lineage pathways. Blood. 132 (11), 1106–1113.

Article  PubMed  PubMed Central  Google Scholar 

Sun J., Ramos A., Chapman B., Johnnidis J.B., Le L., Ho Y.J., Klein A., Hofmann O., Camargo F.D. 2014. Clonal dynamics of native haematopoiesis. Nature. 514 (7522), 322–327.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jang Y.Y., Sharkis S.J. 2007. A low level of reactive oxygen species selects for primitive hematopoietic stem cells that may reside in the low-oxygenic niche. Blood. 110 (8), 3056–3063.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen Y., Fang S., Ding Q., Jiang R., He J., Wang Q., Jin Y., Huang X., Liu S., Capitano M.L., Trinh T., Teng Y., Meng Q., Wan J., Broxmeyer H.E., Guo B. 2021. ADGRG1 enriches for functional human hematopoietic stem cells following ex vivo expansion-induced mitochondrial oxidative stress. J. Clin. Invest. 131 (20).

D’Souza L.C., Kuriakose N., Raghu S.V., Kabekkodu S.P., Sharma A. 2022. ROS-directed activation of Toll/NF-κB in the hematopoietic niche triggers benzene-induced emergency hematopoiesis. Free Radical Biol. Med. 193 (Pt. 1), 190–201.

Article  Google Scholar 

Jakubison B.L., Sarkar T., Gudmundsson K.O., Singh S., Sun L., Morris H.M., Klarmann K.D., Keller J.R. 2022. ID2 and HIF-1α collaborate to protect quiescent hematopoietic stem cells from activation, differentiation, and exhaustion. J. Clin. Invest. 132 (13), e152599.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Guan B., Li C., Yang Y., Lu Y., Sun Y., Su L., Shi G., Bai L., Liu J., Meng A. 2023. Effect of spermidine on radiation-induced long-term bone marrow cell injury. Int. Immunopharmacol. 114, 109557.

Article  CAS  PubMed  Google Scholar 

Aires R., Porto M.L., de Assis L.M., Pereira P.A.N., Carvalho G.R., Côco L.Z., Vasquez E.C., Pereira T.M.C., Campagnaro B.P., Meyrelles S.S. 2021. DNA damage and aging on hematopoietic stem cells: Impact of oxidative stress in ApoE−/− mice. Exp. Gerontol. 156, 111607.

Article  CAS  PubMed  Google Scholar 

Spencer J.A., Ferraro F., Roussakis E., Klein A., Wu J., Runnels J.M., Zaher W., Mortensen L.J., Alt C., Turcotte R., Yusuf R., Côté D., Vinogradov S.A., Scadden D.T., Lin C.P. 2014. Direct measurement of local oxygen concentration in the bone marrow of live animals. Nature. 508 (7495), 269.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Simsek T., Kocabas F., Zheng J., Deberardinis R.J., Mahmoud A.I., Olson E.N., Schneider J.W., Zhang C.C., Sadek H.A. 2010. The distinct metabolic profile of hematopoietic stem cells reflects their location in a hypoxic niche. Cell Stem Cell. 7 (3), 380–390.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Suda T., Takubo K., Semenza G.L. 2011. Metabolic regulation of hematopoietic stem cells in the hypoxic niche. Cell Stem Cell. 9 (4), 298–310.

Article  CAS  PubMed  Google Scholar 

Semenza G.L. 2001. Hypoxia-inducible factor 1: Oxygen homeostasis and disease pathophysiology. Trends Mol. Med. 7 (8), 345–350.

Article  CAS  PubMed  Google Scholar 

Gonzalez-Flores A., Aguilar-Quesada R., Siles E., Pozo S., Rodríguez-Lara M.I., López-Jiménez L., López-Rodríguez M., Peralta-Leal A., Villar D., Martín-Oliva D., Del Peso L., Berra E., Oliver F.J. 2014. Interaction between PARP-1 and HIF-2α in the hypoxic response. Oncogene. 33 (7), 891–898.

Article  CAS  PubMed  Google Scholar 

Zhang P., Yao Q., Lu L., Li Y., Chen P.J., Duan C. 2014. Hypoxia-inducible factor 3 is an oxygen-dependent transcription activator and regulates a distinct transcriptional response to hypoxia. Cell Rep. 6 (6), 1110–1121.

Article  CAS  PubMed  Google Scholar 

Semenza G.L., Wang G.L. 1992. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol. Cell Biol. 12 (12), 5447–5454.

CAS  PubMed  PubMed Central  Google Scholar 

Wang G.L., Semenza G.L. 1993. Characterization of hypoxia-inducible factor 1 and regulation of DNA binding activity by hypoxia. J. Biol. Chemistry. 268 (29), 21513–21518.

Article  CAS  Google Scholar 

Wang G.L., Jiang B.H., Rue E.A., Semenza G.L. 1995. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc. Natl. Acad. Sci. U. S. A. 92 (12), 5510–5514.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Semenza G.L. 2004. Hydroxylation of HIF-1: Oxygen sensing at the molecular level. Physiology (Bethesda). 19 (4), 176–182.

Article  CAS  PubMed  Google Scholar 

Schödel J., Ratcliffe P.J. 2019. Mechanisms of hypoxia signalling: New implications for nephrology. Nat. Rev. Nephrol. 15 (10), 641–659.

Article  PubMed  Google Scholar 

Jaakkola P., Mole D.R., Tian Y.M., Wilson M.I., Gielbert J., Gaskell S.J., Von Kriegsheim A., Hebestreit H.F., Mukherji M., Schofield C.J., Maxwell P.H., Pugh C.W., Ratcliffe P.J. 2001. Targeting of HIF-α to the von Hippel−Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science. 292 (5516), 468–472.

Article  CAS  PubMed  Google Scholar 

Schödel J., Klanke B., Weidemann A., Buchholz B., Bernhardt W., Bertog M., Amann K., Korbmacher C., Wiesener M., Warnecke C., Kurtz A., Eckardt K.U., Willam C. 2009. HIF-prolyl hydroxylases in the rat kidney: Physiologic expression patterns and regulation in acute kidney injury. Am. J. Pathol. 174 (5), 1663–1674.

Article  PubMed  PubMed Central  Google Scholar 

Appelhoffl R.J., Tian Y.M., Raval R.R., Turley H., Harris A.L., Pugh C.W., Ratcliffe P.J., Gleadle J.M. 2004. Differential function of the prolyl hydroxylases PHD1, PHD2, and PHD3 in the regulation of hypoxia-inducible factor. J. Biol. Chem. 279 (37), 38458–38465.

Article  Google Scholar 

Lando D., Peet D.J., Whelan D.A., Gorman J.J., Whitelaw M.L. 2002. Asparagine hydroxylation of the HIF transactivation domain a hypoxic switch. Science. 295 (5556), 858–861.

Article  CAS  PubMed  Google Scholar 

Koivunen P., Hirsilä M., Günzler V., Kivirikko K.I., Myllyharju J. 2004. Catalytic properties of the asparaginyl hydroxylase (FIH) in the oxygen sensing pathway are distinct from those of its prolyl 4-hydroxylases. J. Biol. Chem. 279 (11), 9899–9904.

Article  CAS  PubMed  Google Scholar 

Kaelin W.G., Ratcliffe P.J. 2008. Oxygen sensing by metazoans: The central role of the HIF hydroxylase pathway. Mol. Cell. 30 (4), 393–402.

Article  CAS  PubMed  Google Scholar 

Arany Z., Huang L.E., Eckner R., Bhattacharya S., Jiang C., Goldberg M.A., Bunn H.F., Livingston D.M. 1996. An essential role for p300/CBP in the cellular response to hypoxia. Proc. Natl. Acad. Sci. U. S. A. 93 (23), 12969–12973.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kietzmann T., Mennerich D., Dimova E.Y. 2016. Hypoxia-inducible factors (HIFs) and phosphorylation: Impact on stability, localization, and transactivity. Front. Cell Dev. Biol. 4, 11.

Article  PubMed  PubMed Central  Google Scholar 

Mottet D., Dumont V., Deccache Y., Demazy C., Ninane N., Raes M., Michiels C. 2003. Regulation of hypoxia-inducible factor-1alpha protein level during hypoxic conditions by the phosphatidylinositol 3-kinase/Akt/glycogen synthase kinase 3β pathway in HepG2 cells. J. Biol. Chem. 278 (33), 31277–31285.

Article  CAS  PubMed  Google Scholar 

Du S.C., Zhu L., Wang Y.X., Liu J., Zhang D., Chen Y.L., Peng Q., Liu W., Liu B. 2019. SENP1-mediated deSUMOylation of USP28 regulated HIF-1α accumulation and activation during hypoxia response. Cancer Cell Int. 19, 4.

Article  PubMed  PubMed Central  Google Scholar 

Xu D., Yao Y., Lu L., Costa M., Dai W. 2010. Plk3 functions as an essential component of the hypoxia regulatory pathway by direct phosphorylation of HIF-1α. J. Biol. Chem. 285 (50), 38944–38950.

Article  CAS 

Comments (0)

No login
gif