Kaushansky K. 2006. Lineage-specific hematopoietic growth factors. N. Engl. J. Med. 354 (19), 2034–2045.
Article CAS PubMed Google Scholar
Doulatov S., Notta F., Laurenti E., Dick J.E. 2012. Hematopoiesis: A human perspective. Cell Stem Cell. 10 (2), 120–136.
Article CAS PubMed Google Scholar
Watson C.J., Papula A.L., Poon G.Y.P., Wong W.H., Young A.L., Druley T.E., Fisher D.S., Blundell J.R. 2020. The evolutionary dynamics and fitness landscape of clonal hematopoiesis. Science. 367 (6485), 1449–1454.
Article CAS PubMed Google Scholar
Cheshier S.H., Morrison S.J., Liao X., Weissman I.L. 1999. In vivo proliferation and cell cycle kinetics of long-term self-renewing hematopoietic stem cells. Proc. Natl. Acad. Sci. U. S. A. 96 (6), 3120–3125.
Article CAS PubMed PubMed Central Google Scholar
Cheng T., Rodrigues N., Shen H., Yang Y.G., Dombkowski D., Sykes M., Scadden D.T. 2000. Hematopoietic stem cell quiescence maintained by p21cip1/waf1. Science. 287 (5459), 1804–1809.
Article CAS PubMed Google Scholar
Yamamoto R., Morita Y., Ooehara J., Hamanaka S., Onodera M., Rudolph K.L., Ema H., Nakauchi H. 2013. Clonal analysis unveils self-renewing lineage-restricted progenitors generated directly from hematopoietic stem cells. Cell. 154 (5).
Höfer T., Rodewald H.R. 2018. Differentiation-based model of hematopoietic stem cell functions and lineage pathways. Blood. 132 (11), 1106–1113.
Article PubMed PubMed Central Google Scholar
Sun J., Ramos A., Chapman B., Johnnidis J.B., Le L., Ho Y.J., Klein A., Hofmann O., Camargo F.D. 2014. Clonal dynamics of native haematopoiesis. Nature. 514 (7522), 322–327.
Article CAS PubMed PubMed Central Google Scholar
Jang Y.Y., Sharkis S.J. 2007. A low level of reactive oxygen species selects for primitive hematopoietic stem cells that may reside in the low-oxygenic niche. Blood. 110 (8), 3056–3063.
Article CAS PubMed PubMed Central Google Scholar
Chen Y., Fang S., Ding Q., Jiang R., He J., Wang Q., Jin Y., Huang X., Liu S., Capitano M.L., Trinh T., Teng Y., Meng Q., Wan J., Broxmeyer H.E., Guo B. 2021. ADGRG1 enriches for functional human hematopoietic stem cells following ex vivo expansion-induced mitochondrial oxidative stress. J. Clin. Invest. 131 (20).
D’Souza L.C., Kuriakose N., Raghu S.V., Kabekkodu S.P., Sharma A. 2022. ROS-directed activation of Toll/NF-κB in the hematopoietic niche triggers benzene-induced emergency hematopoiesis. Free Radical Biol. Med. 193 (Pt. 1), 190–201.
Jakubison B.L., Sarkar T., Gudmundsson K.O., Singh S., Sun L., Morris H.M., Klarmann K.D., Keller J.R. 2022. ID2 and HIF-1α collaborate to protect quiescent hematopoietic stem cells from activation, differentiation, and exhaustion. J. Clin. Invest. 132 (13), e152599.
Article CAS PubMed PubMed Central Google Scholar
Guan B., Li C., Yang Y., Lu Y., Sun Y., Su L., Shi G., Bai L., Liu J., Meng A. 2023. Effect of spermidine on radiation-induced long-term bone marrow cell injury. Int. Immunopharmacol. 114, 109557.
Article CAS PubMed Google Scholar
Aires R., Porto M.L., de Assis L.M., Pereira P.A.N., Carvalho G.R., Côco L.Z., Vasquez E.C., Pereira T.M.C., Campagnaro B.P., Meyrelles S.S. 2021. DNA damage and aging on hematopoietic stem cells: Impact of oxidative stress in ApoE−/− mice. Exp. Gerontol. 156, 111607.
Article CAS PubMed Google Scholar
Spencer J.A., Ferraro F., Roussakis E., Klein A., Wu J., Runnels J.M., Zaher W., Mortensen L.J., Alt C., Turcotte R., Yusuf R., Côté D., Vinogradov S.A., Scadden D.T., Lin C.P. 2014. Direct measurement of local oxygen concentration in the bone marrow of live animals. Nature. 508 (7495), 269.
Article CAS PubMed PubMed Central Google Scholar
Simsek T., Kocabas F., Zheng J., Deberardinis R.J., Mahmoud A.I., Olson E.N., Schneider J.W., Zhang C.C., Sadek H.A. 2010. The distinct metabolic profile of hematopoietic stem cells reflects their location in a hypoxic niche. Cell Stem Cell. 7 (3), 380–390.
Article CAS PubMed PubMed Central Google Scholar
Suda T., Takubo K., Semenza G.L. 2011. Metabolic regulation of hematopoietic stem cells in the hypoxic niche. Cell Stem Cell. 9 (4), 298–310.
Article CAS PubMed Google Scholar
Semenza G.L. 2001. Hypoxia-inducible factor 1: Oxygen homeostasis and disease pathophysiology. Trends Mol. Med. 7 (8), 345–350.
Article CAS PubMed Google Scholar
Gonzalez-Flores A., Aguilar-Quesada R., Siles E., Pozo S., Rodríguez-Lara M.I., López-Jiménez L., López-Rodríguez M., Peralta-Leal A., Villar D., Martín-Oliva D., Del Peso L., Berra E., Oliver F.J. 2014. Interaction between PARP-1 and HIF-2α in the hypoxic response. Oncogene. 33 (7), 891–898.
Article CAS PubMed Google Scholar
Zhang P., Yao Q., Lu L., Li Y., Chen P.J., Duan C. 2014. Hypoxia-inducible factor 3 is an oxygen-dependent transcription activator and regulates a distinct transcriptional response to hypoxia. Cell Rep. 6 (6), 1110–1121.
Article CAS PubMed Google Scholar
Semenza G.L., Wang G.L. 1992. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol. Cell Biol. 12 (12), 5447–5454.
CAS PubMed PubMed Central Google Scholar
Wang G.L., Semenza G.L. 1993. Characterization of hypoxia-inducible factor 1 and regulation of DNA binding activity by hypoxia. J. Biol. Chemistry. 268 (29), 21513–21518.
Wang G.L., Jiang B.H., Rue E.A., Semenza G.L. 1995. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc. Natl. Acad. Sci. U. S. A. 92 (12), 5510–5514.
Article CAS PubMed PubMed Central Google Scholar
Semenza G.L. 2004. Hydroxylation of HIF-1: Oxygen sensing at the molecular level. Physiology (Bethesda). 19 (4), 176–182.
Article CAS PubMed Google Scholar
Schödel J., Ratcliffe P.J. 2019. Mechanisms of hypoxia signalling: New implications for nephrology. Nat. Rev. Nephrol. 15 (10), 641–659.
Jaakkola P., Mole D.R., Tian Y.M., Wilson M.I., Gielbert J., Gaskell S.J., Von Kriegsheim A., Hebestreit H.F., Mukherji M., Schofield C.J., Maxwell P.H., Pugh C.W., Ratcliffe P.J. 2001. Targeting of HIF-α to the von Hippel−Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science. 292 (5516), 468–472.
Article CAS PubMed Google Scholar
Schödel J., Klanke B., Weidemann A., Buchholz B., Bernhardt W., Bertog M., Amann K., Korbmacher C., Wiesener M., Warnecke C., Kurtz A., Eckardt K.U., Willam C. 2009. HIF-prolyl hydroxylases in the rat kidney: Physiologic expression patterns and regulation in acute kidney injury. Am. J. Pathol. 174 (5), 1663–1674.
Article PubMed PubMed Central Google Scholar
Appelhoffl R.J., Tian Y.M., Raval R.R., Turley H., Harris A.L., Pugh C.W., Ratcliffe P.J., Gleadle J.M. 2004. Differential function of the prolyl hydroxylases PHD1, PHD2, and PHD3 in the regulation of hypoxia-inducible factor. J. Biol. Chem. 279 (37), 38458–38465.
Lando D., Peet D.J., Whelan D.A., Gorman J.J., Whitelaw M.L. 2002. Asparagine hydroxylation of the HIF transactivation domain a hypoxic switch. Science. 295 (5556), 858–861.
Article CAS PubMed Google Scholar
Koivunen P., Hirsilä M., Günzler V., Kivirikko K.I., Myllyharju J. 2004. Catalytic properties of the asparaginyl hydroxylase (FIH) in the oxygen sensing pathway are distinct from those of its prolyl 4-hydroxylases. J. Biol. Chem. 279 (11), 9899–9904.
Article CAS PubMed Google Scholar
Kaelin W.G., Ratcliffe P.J. 2008. Oxygen sensing by metazoans: The central role of the HIF hydroxylase pathway. Mol. Cell. 30 (4), 393–402.
Article CAS PubMed Google Scholar
Arany Z., Huang L.E., Eckner R., Bhattacharya S., Jiang C., Goldberg M.A., Bunn H.F., Livingston D.M. 1996. An essential role for p300/CBP in the cellular response to hypoxia. Proc. Natl. Acad. Sci. U. S. A. 93 (23), 12969–12973.
Article CAS PubMed PubMed Central Google Scholar
Kietzmann T., Mennerich D., Dimova E.Y. 2016. Hypoxia-inducible factors (HIFs) and phosphorylation: Impact on stability, localization, and transactivity. Front. Cell Dev. Biol. 4, 11.
Article PubMed PubMed Central Google Scholar
Mottet D., Dumont V., Deccache Y., Demazy C., Ninane N., Raes M., Michiels C. 2003. Regulation of hypoxia-inducible factor-1alpha protein level during hypoxic conditions by the phosphatidylinositol 3-kinase/Akt/glycogen synthase kinase 3β pathway in HepG2 cells. J. Biol. Chem. 278 (33), 31277–31285.
Article CAS PubMed Google Scholar
Du S.C., Zhu L., Wang Y.X., Liu J., Zhang D., Chen Y.L., Peng Q., Liu W., Liu B. 2019. SENP1-mediated deSUMOylation of USP28 regulated HIF-1α accumulation and activation during hypoxia response. Cancer Cell Int. 19, 4.
Article PubMed PubMed Central Google Scholar
Xu D., Yao Y., Lu L., Costa M., Dai W. 2010. Plk3 functions as an essential component of the hypoxia regulatory pathway by direct phosphorylation of HIF-1α. J. Biol. Chem. 285 (50), 38944–38950.
Comments (0)