Sevilla E., Bes M.T., Gonzalez A., Peleato M.L., Fillat M.F. 2019. Redox-based transcriptional regulation in prokaryotes: Revisiting model mechanisms. Antioxid. Redox Signal. 30, 1651–1696. https://doi.org/10.1089/ars.2017.7442
Article CAS PubMed Google Scholar
Imlay J.A. 2008. Cellular defenses against superoxide and hydrogen peroxide. Ann. Rev. Biochem. 77, 755–776. https://doi.org/10.1146/annurev.biochem.77.061606.161055
Article CAS PubMed Google Scholar
Smirnova G.V., Oktyabrsky O.N. 2005. Glutathione in bacteria. Biochemistry (Moscow). 70, 1199–1211.
Vlamis-Gardikas A. 2008. The multiple functions of the thiol-based electron flow pathways of Escherichia coli: Eternal concepts revised. Biochim. Biophys. Acta. 1780, 1170–1200. https://doi.org/10.1016/j.bbagen.2008.03.013
Article CAS PubMed Google Scholar
Smirnova G., Muzyka N., Oktyabrsky O. 2012. Transmembrane glutathione cycling in growing Escherichia coli cells. Microbiol. Res. 167, 166–172. https://doi.org/10.1016/j.micres.2011.05.005
Article CAS PubMed Google Scholar
Carmel-Harel O., Storz G. 2000. Roles of the glutathione- and thioredoxin-dependent reduction systems in the Escherichia coli and Saccharomyces cerevisiae responses to oxidative stress. Annu. Rev. Microbiol. 54, 439–461. https://doi.org/10.1146/annurev.micro.54.1.439
Article CAS PubMed Google Scholar
Wanner B.L. 1996. Phosphorus assimilation and control of the phosphate regulon. In Escherichia coli and Salmonella: Cellular and Molecular Biology. Neidhardt F.C., Curtiss III R., Ingraham J.L., Lin E.C.C., Low K.B., Magasanik B., Reznikoff W.S., Riley M., Schaechter M., Umbrager H.E., Eds. Washington DC: Am. Soc. Microbiol., 1357–1381.
Lamarche M.G., Wanner B.L., Crepin S., Harel J. 2008. The phosphate regulon and bacterial virulence: A regulatory network connecting phosphate homeostasis and pathogenesis. FEMS Microbiol. Rev. 32 (3), 461–473. https://doi.org/10.1111/j.1574-6976.2008.00101.x
Article CAS PubMed Google Scholar
VanBogelen R.A., Olson E.R., Wanner B.L., Neidhardt F.C. 1996. Global analysis of proteins synthesized during phosphorus restriction in Escherichia coli. J. Bacteriol. 178 (15), 4344–4366. https://doi.org/10.1128/jb.178.15.4344-4366.1996
Article CAS PubMed PubMed Central Google Scholar
Gerard F., Dri A.M., Moreau P.L. 1999. Role of Escherichia coli RpoS, LexA and H-NS global regulators in metabolism and survival under aerobic, phosphate-starvation conditions. Microbiology. 145, 1547–1562. https://doi.org/10.1099/13500872-145-7-1547
Article CAS PubMed Google Scholar
Moreau P.L., Gerard F., Lutz N.W., Cozzone P. 2001. Non-growing Escherichia coli cells starved for glucose or phosphate use different mechanisms to survive oxidative stress. Mol. Microbiol. 39, 1048–1060. https://doi.org/10.1046/j.1365-2958.2001.02303.x
Article CAS PubMed Google Scholar
Moreau P.L. 2004. Diversion of the metabolic flux from pyruvate dehydrogenase to pyruvate oxidase decreases oxidative stress during glucose metabolism in nongrowing Escherichia coli cells incubated under aerobic, phosphate starvation conditions. J. Bacteriol. 186, 7364–7368. https://doi.org/10.1128/JB.186.21.7364-7368.2004
Article CAS PubMed PubMed Central Google Scholar
Yuan Z.C., Zaheer R., Finan T.M. 2005. Phosphate limitation induces catalase expression in Sinorhizobium meliloti, Pseudomonas aeruginosa and Agrobacterium tumefaciens. Mol. Microbiol. 58 (3), 877–894. https://doi.org/10.1111/j.1365-2958.2005.04874.x
Article CAS PubMed Google Scholar
Smirnova G.V., Tyulenev A.V., Bezmaternykh K.V., Muzyka N.G., Ushakov V.Y., Oktyabrsky O.N. 2019. Cysteine homeostasis under inhibition of protein synthesis in Escherichia coli cells. Amino Acids. 51, 1577–1592. https://doi.org/10.1007/s00726-019-02795-2
Article CAS PubMed Google Scholar
Park S., Imlay, J.A. 2003. High levels of intracellular cysteine promote oxidative DNA damage by driving the Fenton reaction. J. Bacteriol. 185, 1942–1950. https://doi.org/10.1128/JB.185.6.1942-1950.2003
Article CAS PubMed PubMed Central Google Scholar
Imlay K.R.C., Korshunov S., Imlay J.A. 2015. The physiological roles and adverse effects of the two cystine importers of Escherichia coli. J. Bacteriol. 197, 3629–3644. https://doi.org/10.1128/JB.00277-15
Article CAS PubMed PubMed Central Google Scholar
Korshunov S., Imlay K.R.C., Imlay J.A. 2020. Cystine import is a valuable but risky process whose hazards Escherichia coli minimizes by inducing a cysteine exporter. Mol. Microbiol. 113, 22–39. https://doi.org/10.1111/mmi.14403
Article CAS PubMed Google Scholar
Baba T., Ara T., Hasegawa M., Takai Y., Okumura Y., Baba M., Datsenko K.A., Tomita M., Wanner B.L., Mori H. 2006. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: The Keio collection. Mol. Syst. Biol. 2, 2006.0008. https://doi.org/10.1038/msb4100050
Tao K., Makino K., Yonei S., Nacata A., Shinagawa H. 1989. Molecular cloning and nucleotide sequencing of oxyR, the positive regulatory gene of a regulon for an adaptive response to oxidative stress in Escherichia coli: Homologies between OxyR protein and a family of bacterial activator proteins. Mol. Gen. Genet. 218, 371–376. https://doi.org/10.1007/bf00332397
Article CAS PubMed Google Scholar
Mulvey M.R., Switala J., Borys A., Loewen P.C. 1990. Regulation of transcription of katE and katF in Escherichia coli. J. Bacteriol. 172, 6713–6720. https://doi.org/10.1128/jb.172.12.6713-6720.1990
Article CAS PubMed PubMed Central Google Scholar
Volkert M.R., Gately F.H., Hajec L.I. 1989. Expression of DNA damage-inducible genes of Escherichia coli upon treatment with methylating, ethylating and propylating agents. Mutation. Res. 217, 109–115. https://doi.org/10.1016/0921-8777(89)90062-1
Article CAS PubMed Google Scholar
Maringanti S., Imlay J.A. 1999. An intracellular iron chelator pleiotropically suppresses enzymatic and growth defects of superoxide dismutase-deficient Escherichia coli. J. Bacteriol. 181, 3792–3802. https://doi.org/10.1128/JB.181.12.3792-3802.1999
Article CAS PubMed PubMed Central Google Scholar
Neidhardt F.C., Bloch P.L., Smith D.F. 1974. Culture medium for enterobacteria. J. Bacteriol. 119, 736–747. https://doi.org/10.1128/jb.119.3.736-747.1974
Article CAS PubMed PubMed Central Google Scholar
Wickens H.J., Pinney R.J., Mason D.J., Gant V.A. 2000. Flow cytometric investigation of filamentation, membrane patency and membrane potential in Escherichia coli following ciprofloxacin exposure. Antimicrob. Agents Chemother. 44, 682–687. https://doi.org/10.1128/AAC.44.3.676-681.2000
Article CAS PubMed PubMed Central Google Scholar
Smirnova G.V., Muzyka N.G., Ushakov V.Y., Tyulenev A.V., Oktyabrsky O.N. 2015. Extracellular superoxide provokes glutathione efflux from Escherichia coli cells. Res. Microbiol. 166, 609–617. https://doi.org/10.1016/j.resmic.2015.07.007
Article CAS PubMed Google Scholar
Korshunov S., Imlay J.A. 2006. Detection and quantification of superoxide formed within the periplasm of Escherichia coli. J. Bacteriol. 188, 6326–6334. https://doi.org/10.1128/JB.00554-06
Article CAS PubMed PubMed Central Google Scholar
Seaver L.C., Imlay J.A. 2001. Alkyl hydroperoxide reductase is the primary scavenger of endogenous hydrogen peroxide in Escherichia coli. J. Bacteriol. 183, 7173–7181. https://doi.org/10.1128/JB.183.24.7173-7181.2001
Article CAS PubMed PubMed Central Google Scholar
Tietze F. 1969. Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: Applications to mammalian blood and other tissues. Anal. Biochem. 27, 502–522. https://doi.org/10.1016/0003-2697(69)90064-5
Article CAS PubMed Google Scholar
Miller J.H. 1972. Experiments in Molecular Genetics. Cold Spring Harbor, New York: Cold Spring Harbor Lab. Press.
Ivanova A., Miller C., Glinsky G., Eisenstark A. 1994. Role of the rpoS(katF) in oxyR independent regulation of hydroperoxidase I in Escherichia coli. Mol. Microbiol. 12, 571–578. https://doi.org/10.1111/j.1365-2958.1994.tb01043.x
Article CAS PubMed Google Scholar
Ihssen J., Egli T. 2004. Specific growth rate and not cell density controls the general stress response in Escherichia coli. Microbiology. 150, 1637–1648. https://doi.org/10.1099/mic.0.26849-0
Article CAS PubMed Google Scholar
Imlay J.A., Linn S. 1988. Toxic DNA damage by hydrogen peroxide through the Fenton reaction in vivo and in vitro. Science. 240, 640–642. https://doi.org/10.1126/science.2834821
Article CAS PubMed Google Scholar
Hantke K. 2001. Iron and metal regulation in bacteria. Curr. Opin. Microbiol. 4, 172–177. https://doi.org/10.1016/s1369-5274(00)00184-3
Comments (0)