Changes in the Activity of Antioxidant Systems of Escherichia coli under Phosphate Starvation

Sevilla E., Bes M.T., Gonzalez A., Peleato M.L., Fillat M.F. 2019. Redox-based transcriptional regulation in prokaryotes: Revisiting model mechanisms. Antioxid. Redox Signal. 30, 1651–1696. https://doi.org/10.1089/ars.2017.7442

Article  CAS  PubMed  Google Scholar 

Imlay J.A. 2008. Cellular defenses against superoxide and hydrogen peroxide. Ann. Rev. Biochem. 77, 755–776. https://doi.org/10.1146/annurev.biochem.77.061606.161055

Article  CAS  PubMed  Google Scholar 

Smirnova G.V., Oktyabrsky O.N. 2005. Glutathione in bacteria. Biochemistry (Moscow). 70, 1199–1211.

CAS  PubMed  Google Scholar 

Vlamis-Gardikas A. 2008. The multiple functions of the thiol-based electron flow pathways of Escherichia coli: Eternal concepts revised. Biochim. Biophys. Acta. 1780, 1170–1200. https://doi.org/10.1016/j.bbagen.2008.03.013

Article  CAS  PubMed  Google Scholar 

Smirnova G., Muzyka N., Oktyabrsky O. 2012. Transmembrane glutathione cycling in growing Escherichia coli cells. Microbiol. Res. 167, 166–172. https://doi.org/10.1016/j.micres.2011.05.005

Article  CAS  PubMed  Google Scholar 

Carmel-Harel O., Storz G. 2000. Roles of the glutathione- and thioredoxin-dependent reduction systems in the Escherichia coli and Saccharomyces cerevisiae responses to oxidative stress. Annu. Rev. Microbiol. 54, 439–461. https://doi.org/10.1146/annurev.micro.54.1.439

Article  CAS  PubMed  Google Scholar 

Wanner B.L. 1996. Phosphorus assimilation and control of the phosphate regulon. In Escherichia coli and Salmonella: Cellular and Molecular Biology. Neidhardt F.C., Curtiss III R., Ingraham J.L., Lin E.C.C., Low K.B., Magasanik B., Reznikoff W.S., Riley M., Schaechter M., Umbrager H.E., Eds. Washington DC: Am. Soc. Microbiol., 1357–1381.

Google Scholar 

Lamarche M.G., Wanner B.L., Crepin S., Harel J. 2008. The phosphate regulon and bacterial virulence: A regulatory network connecting phosphate homeostasis and pathogenesis. FEMS Microbiol. Rev. 32 (3), 461–473. https://doi.org/10.1111/j.1574-6976.2008.00101.x

Article  CAS  PubMed  Google Scholar 

VanBogelen R.A., Olson E.R., Wanner B.L., Neidhardt F.C. 1996. Global analysis of proteins synthesized during phosphorus restriction in Escherichia coli. J. Bacteriol. 178 (15), 4344–4366. https://doi.org/10.1128/jb.178.15.4344-4366.1996

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gerard F., Dri A.M., Moreau P.L. 1999. Role of Escherichia coli RpoS, LexA and H-NS global regulators in metabolism and survival under aerobic, phosphate-starvation conditions. Microbiology. 145, 1547–1562. https://doi.org/10.1099/13500872-145-7-1547

Article  CAS  PubMed  Google Scholar 

Moreau P.L., Gerard F., Lutz N.W., Cozzone P. 2001. Non-growing Escherichia coli cells starved for glucose or phosphate use different mechanisms to survive oxidative stress. Mol. Microbiol. 39, 1048–1060. https://doi.org/10.1046/j.1365-2958.2001.02303.x

Article  CAS  PubMed  Google Scholar 

Moreau P.L. 2004. Diversion of the metabolic flux from pyruvate dehydrogenase to pyruvate oxidase decreases oxidative stress during glucose metabolism in nongrowing Escherichia coli cells incubated under aerobic, phosphate starvation conditions. J. Bacteriol. 186, 7364–7368. https://doi.org/10.1128/JB.186.21.7364-7368.2004

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yuan Z.C., Zaheer R., Finan T.M. 2005. Phosphate limitation induces catalase expression in Sinorhizobium meliloti, Pseudomonas aeruginosa and Agrobacterium tumefaciens. Mol. Microbiol. 58 (3), 877–894. https://doi.org/10.1111/j.1365-2958.2005.04874.x

Article  CAS  PubMed  Google Scholar 

Smirnova G.V., Tyulenev A.V., Bezmaternykh K.V., Muzyka N.G., Ushakov V.Y., Oktyabrsky O.N. 2019. Cysteine homeostasis under inhibition of protein synthesis in Escherichia coli cells. Amino Acids. 51, 1577–1592. https://doi.org/10.1007/s00726-019-02795-2

Article  CAS  PubMed  Google Scholar 

Park S., Imlay, J.A. 2003. High levels of intracellular cysteine promote oxidative DNA damage by driving the Fenton reaction. J. Bacteriol. 185, 1942–1950. https://doi.org/10.1128/JB.185.6.1942-1950.2003

Article  CAS  PubMed  PubMed Central  Google Scholar 

Imlay K.R.C., Korshunov S., Imlay J.A. 2015. The physiological roles and adverse effects of the two cystine importers of Escherichia coli. J. Bacteriol. 197, 3629–3644. https://doi.org/10.1128/JB.00277-15

Article  CAS  PubMed  PubMed Central  Google Scholar 

Korshunov S., Imlay K.R.C., Imlay J.A. 2020. Cystine import is a valuable but risky process whose hazards Escherichia coli minimizes by inducing a cysteine exporter. Mol. Microbiol. 113, 22–39. https://doi.org/10.1111/mmi.14403

Article  CAS  PubMed  Google Scholar 

Baba T., Ara T., Hasegawa M., Takai Y., Okumura Y., Baba M., Datsenko K.A., Tomita M., Wanner B.L., Mori H. 2006. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: The Keio collection. Mol. Syst. Biol. 2, 2006.0008. https://doi.org/10.1038/msb4100050

Tao K., Makino K., Yonei S., Nacata A., Shinagawa H. 1989. Molecular cloning and nucleotide sequencing of oxyR, the positive regulatory gene of a regulon for an adaptive response to oxidative stress in Escherichia coli: Homologies between OxyR protein and a family of bacterial activator proteins. Mol. Gen. Genet. 218, 371–376. https://doi.org/10.1007/bf00332397

Article  CAS  PubMed  Google Scholar 

Mulvey M.R., Switala J., Borys A., Loewen P.C. 1990. Regulation of transcription of katE and katF in Escherichia coli. J. Bacteriol. 172, 6713–6720. https://doi.org/10.1128/jb.172.12.6713-6720.1990

Article  CAS  PubMed  PubMed Central  Google Scholar 

Volkert M.R., Gately F.H., Hajec L.I. 1989. Expression of DNA damage-inducible genes of Escherichia coli upon treatment with methylating, ethylating and propylating agents. Mutation. Res. 217, 109–115. https://doi.org/10.1016/0921-8777(89)90062-1

Article  CAS  PubMed  Google Scholar 

Maringanti S., Imlay J.A. 1999. An intracellular iron chelator pleiotropically suppresses enzymatic and growth defects of superoxide dismutase-deficient Escherichia coli. J. Bacteriol. 181, 3792–3802. https://doi.org/10.1128/JB.181.12.3792-3802.1999

Article  CAS  PubMed  PubMed Central  Google Scholar 

Neidhardt F.C., Bloch P.L., Smith D.F. 1974. Culture medium for enterobacteria. J. Bacteriol. 119, 736–747. https://doi.org/10.1128/jb.119.3.736-747.1974

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wickens H.J., Pinney R.J., Mason D.J., Gant V.A. 2000. Flow cytometric investigation of filamentation, membrane patency and membrane potential in Escherichia coli following ciprofloxacin exposure. Antimicrob. Agents Chemother. 44, 682–687. https://doi.org/10.1128/AAC.44.3.676-681.2000

Article  CAS  PubMed  PubMed Central  Google Scholar 

Smirnova G.V., Muzyka N.G., Ushakov V.Y., Tyulenev A.V., Oktyabrsky O.N. 2015. Extracellular superoxide provokes glutathione efflux from Escherichia coli cells. Res. Microbiol. 166, 609–617. https://doi.org/10.1016/j.resmic.2015.07.007

Article  CAS  PubMed  Google Scholar 

Korshunov S., Imlay J.A. 2006. Detection and quantification of superoxide formed within the periplasm of Escherichia coli. J. Bacteriol. 188, 6326–6334. https://doi.org/10.1128/JB.00554-06

Article  CAS  PubMed  PubMed Central  Google Scholar 

Seaver L.C., Imlay J.A. 2001. Alkyl hydroperoxide reductase is the primary scavenger of endogenous hydrogen peroxide in Escherichia coli. J. Bacteriol. 183, 7173–7181. https://doi.org/10.1128/JB.183.24.7173-7181.2001

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tietze F. 1969. Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: Applications to mammalian blood and other tissues. Anal. Biochem. 27, 502–522. https://doi.org/10.1016/0003-2697(69)90064-5

Article  CAS  PubMed  Google Scholar 

Miller J.H. 1972. Experiments in Molecular Genetics. Cold Spring Harbor, New York: Cold Spring Harbor Lab. Press.

Google Scholar 

Ivanova A., Miller C., Glinsky G., Eisenstark A. 1994. Role of the rpoS(katF) in oxyR independent regulation of hydroperoxidase I in Escherichia coli. Mol. Microbiol. 12, 571–578. https://doi.org/10.1111/j.1365-2958.1994.tb01043.x

Article  CAS  PubMed  Google Scholar 

Ihssen J., Egli T. 2004. Specific growth rate and not cell density controls the general stress response in Escherichia coli. Microbiology. 150, 1637–1648. https://doi.org/10.1099/mic.0.26849-0

Article  CAS  PubMed  Google Scholar 

Imlay J.A., Linn S. 1988. Toxic DNA damage by hydrogen peroxide through the Fenton reaction in vivo and in vitro. Science. 240, 640–642. https://doi.org/10.1126/science.2834821

Article  CAS  PubMed  Google Scholar 

Hantke K. 2001. Iron and metal regulation in bacteria. Curr. Opin. Microbiol. 4, 172–177. https://doi.org/10.1016/s1369-5274(00)00184-3

Article  CAS 

Comments (0)

No login
gif