Hardev Ramandeep Singh Girn., Ahilathirunayagam S., Mavor A.I.D., Homer-Vanniasinkam S. 2007. Reperfusion syndrome: Cellular mechanisms of microvascular dysfunction and potential therapeutic strategies. Vasc. Endovasc. Surg. 41, 277–293.
Soares R.O.S., Losada D.M., Jordani M.C., Évora P., Castro-E-Silva O. 2019. Ischemia/reperfusion injury revisited: An overview of the latest pharmacological strategies. Int. J. Mol. Sci. 20, 5034.
Article CAS PubMed PubMed Central Google Scholar
Dar W.A., Sullivan E., Bynon J.S., Eltzschig H., Ju C. 2019. Ischaemia reperfusion injury in liver transplantation: Cellular and molecular mechanisms. Liver Int. 39, 788–801.
Article PubMed PubMed Central Google Scholar
Chen Z., Tian R., She Z., Cai J., Li H. 2020. Role of oxidative stress in the pathogenesis of nonalcoholic fatty liver disease. Free Radical Biol. Med. 152, 116–141.
Wu M.Y., Yiang G.T., Liao W.T., Tsai A.P.Y., Cheng Y.L., Cheng P.W., Li C.Y., Li C.J. 2018. Current mechanistic concepts in ischemia and reperfusion injury. Cell Physiol. Biochem. 46, 1650–1667.
Article CAS PubMed Google Scholar
Eltzschig H.K., Eckle T. 2011. Ischemia and reperfusion—from mechanism to translation. Nat. Med. 17, 1391–1401.
Article CAS PubMed Google Scholar
Mishra P.K., Adameova A., Hill J.A., Baines C.P., Kang P.M., Downey J.M., Narula J., Takahashi M., Abbate A., Piristine H.C., Kar S., Su S., Higa J.K., Kawasaki N.K., Matsui T. 2019. Guidelines for evaluating myocardial cell death. Am. J. Physiol., Heart Circ. Physiol. 317, H891–H922.
Article CAS PubMed Google Scholar
Bauer T.M., Murphy E. 2020. Role of mitochondrial calcium and the permeability transition pore in regulating cell death. Circ. Res. 126, 280–293.
Article CAS PubMed PubMed Central Google Scholar
van Golen R.F., Reiniers M.J., Marsman G., Alles L.K., van Rooyen D.M., Petri B., Van der Mark V.A., van Beek A.A., Meijer B., Maas M.A., Zeerleder S., Verheij J., Farrell G.C., Luken B.M., Teoh N.C., van Gulik T.M., Murphy M.P., Heger M. 2019. The damage-associated molecular pattern HMGB1 is released early after clinical hepatic ischemia/reperfusion. Biochim. Biophys. Acta, Mol. Basis Dis. 1865, 1192–1200.
Gong L., Pan Q., Yang N. 2020. Autophagy and inflammation regulation in acute kidney injury. Front. Physiol. 11, 576463.
Article PubMed PubMed Central Google Scholar
Vorobjeva N.V. 2020. Neutrophil extracellular traps: New aspects. Moscow Univ. Biol. Sci. Bull. 75, 173–188.
Article CAS PubMed Google Scholar
Kim S.W., Lee H., Lee H.K., Kim I.D., Lee J.K. 2019. Neutrophil extracellular trap induced by HMGB1 exacerbates damages in the ischemic brain. Acta Neuropathol. Commun. 7, 94.
Raedschelders K., Ansley D.M., Chen D.D.Y. 2012. The cellular and molecular origin of reactive oxygen species generation during myocardial ischemia and reperfusion. Pharmacol. Ther. 133, 230–255.
Article CAS PubMed Google Scholar
Zhou T., Chuang C.C., Zuo L. 2015. Molecular characterization of reactive oxygen species in myocardial ischemia−reperfusion injury. Biomed. Res. Int. 2015, 864946.
Article PubMed PubMed Central Google Scholar
Bugger H., Pfeil K. 2020. Mitochondrial ROS in myocardial ischemia reperfusion and remodeling. Biochim. Biophys. Acta, Mol. Basis Dis. 1866, 165768.
Matsushima S., Sadoshima J. 2022. Yin and Yang of NADPH oxidases in myocardial ischemia–reperfusion. Antioxidants. 11, 1069.
Article CAS PubMed PubMed Central Google Scholar
Lambeth J.D., Krause K.H., Clark R.A. 2008. NOX enzymes as novel targets for drug development. Semin. Immunopathol. 30, 339–363.
Article CAS PubMed Google Scholar
Loukogeorgakis S.P., Van Den Berg M.J., Sofat R., Nitsch D., Charakida M., Haiyee B., De Groot E., MacAllister R.J., Kuijpers T.W., Deanfield J.E. 2010. Role of NADPH oxidase in endothelial ischemia/reperfusion injury in humans. Circulation. 121, 2310–2316.
Article CAS PubMed Google Scholar
Nakagiri A., Sunamoto M., Murakami M. 2007. NA-DPH oxidase is involved in ischaemia/reperfusion-induced damage in rat gastric mucosa via ROS production—role of NADPH oxidase in rat stomachs. Inflammopharmacology. 15, 278–281.
Article CAS PubMed Google Scholar
Förstermann U., Sessa W.C. 2012. Nitric oxide synthases: Regulation and function. Eur. Heart J. 33, 829–837.
Xu F., Mack C.P., Quandt K.S., Shlafer M., Massey V., Hultquist D.E. 1993. Pyrroloquinoline quinone acts with flavin reductase to reduce ferryl myoglobin in vitro and protects isolated heart from reoxygenation injury. Biochem. Biophys. Res. Commun. 193, 434–439.
Article CAS PubMed Google Scholar
McLeod L.L., Alayash A.I. 1999. Detection of a ferrylhemoglobin intermediate in an endothelial cell model after hypoxia−reoxygenation. Am. J. Physiol., Heart Circ. Physiol. 277, H92–H99.
Ruan Y., Zeng J., Jin Q., Chu M., Ji K., Wang Z., Li L. 2020. Endoplasmic reticulum stress serves an important role in cardiac ischemia/reperfusion injury (review). Exp. Ther. Med. 20, 260.
Zhou H., Toan S. 2020. Pathological roles of mitochondrial oxidative stress and mitochondrial dynamics in cardiac microvascular ischemia/reperfusion injury. Biomolecules. 10, 85.
Article CAS PubMed PubMed Central Google Scholar
Lipskaia L., Keuylian Z., Blirando K., Mougenot N., Jacquet A., Rouxel C., Sghairi H., Elaib Z., Blaise R., Adnot S., Hajjar R.J., Chemaly E.R., Limon I., Bobe R. 2014. Expression of Sarco (Endo) plasmic reticulum calcium ATPase (SERCA) system in normal mouse cardiovascular tissues, heart failure and atherosclerosis. Biochim. Biophys. Acta. 1843, 2705.
Article CAS PubMed PubMed Central Google Scholar
Wang R., Wang M., He S., Sun G., Sun X. 2020. Targeting calcium homeostasis in myocardial ischemia/reperfusion injury: An overview of regulatory mechanisms and therapeutic reagents. Front. Pharmacol. 11, 1–14.
Adams C.J., Kopp M.C., Larburu N., Nowak P.R., Ali M.M.U. 2019. Structure and molecular mechanism of ER stress signaling by the unfolded protein response signal activator IRE1. Front. Mol. Biosci. 6, 1–12.
Kaul S., Methner C., Cao Z., Mishra A. 2022. Mechanisms of the “No-Reflow” phenomenon after acute myocardial infarction. JACC Basic Transl. Sci. 8, 204–220.
Article PubMed PubMed Central Google Scholar
Edwards N.J., Hwang C., Marini S., Pagani C.A., Spreadborough P.J., Rowe C.J., Yu P., Mei A., Visser N., Li S., Hespe G.E., Huber A.K., Strong A.L., Shelef M.A., Knight J.S., Davis T.A., Levi B. 2020. The role of neutrophil extracellular traps and TLR signaling in skeletal muscle ischemia reperfusion injury. FASEB J. 34, 15753–15770.
Article CAS PubMed Google Scholar
Arlati S. 2019. Pathophysiology of acute illness and injury. In Operative Techniques and Recent Advances in Acute Care and Emergency Surgery. Cham: Springer, 11–42.
Granger D.N., Kvietys P.R. 2015. Reperfusion injury and reactive oxygen species: The evolution of a concept. Redox Biol. 6, 524–551.
Article CAS PubMed PubMed Central Google Scholar
Tennant D., Howell N.J. 2014. The role of HIFs in ischemia−reperfusion injury. Hypoxia. 2, 107–115.
Article PubMed PubMed Central Google Scholar
Silva-Islas C.A., Maldonado P.D. 2018. Canonical and non-canonical mechanisms of Nrf2 activation. Pharmacol. Res. 134, 92–99.
Article CAS PubMed Google Scholar
Toth R., Warfel N. 2017. Strange bedfellows: nuclear factor, erythroid 2-like 2 (Nrf2) and hypoxia-inducible factor 1 (HIF-1) in tumor hypoxia. Antioxidants. 6, 27.
Article PubMed PubMed Central Google Scholar
Gallagher B.M., Phelan S.A. 2007. Investigating transcriptional regulation of Prdx6 in mouse liver cells. Free Radical Biol. Med. 42, 1270–1277.
Park Y.-H., Kim S.-U., Kwon T.-H., Kim J.-M., Song I.-S., Shin H.-J., Lee B.-K., Bang D.-H., Lee S.-J., Lee D.-S., Chang K.-T., Kim B.-Y., Yu D.-Y. 2016. Peroxiredoxin II promotes hepatic tumorigenesis through cooperation with Ras/Forkhead box M1 signaling pathway. Oncogene. 35, 3503–3513.
Article CAS PubMed Google Scholar
Guo Q.J., Mills J.N., Bandurraga S.G., Nogueira L.M., Mason N.J., Camp E.R., Larue A.C., Turner D.P., Findlay V.J. 2013. MicroRNA-510 promotes cell and tumor growth by targeting peroxiredoxin1 in breast cancer. Breast Cancer Res. 15, R70.
Article PubMed PubMed Central Google Scholar
Hopkins B.L.,
Comments (0)