Ischemia–Reperfusion Injury: Molecular Mechanisms of Pathogenesis and Methods of Their Correction

Hardev Ramandeep Singh Girn., Ahilathirunayagam S., Mavor A.I.D., Homer-Vanniasinkam S. 2007. Reperfusion syndrome: Cellular mechanisms of microvascular dysfunction and potential therapeutic strategies. Vasc. Endovasc. Surg. 41, 277–293.

Article  Google Scholar 

Soares R.O.S., Losada D.M., Jordani M.C., Évora P., Castro-E-Silva O. 2019. Ischemia/reperfusion injury revisited: An overview of the latest pharmacological strategies. Int. J. Mol. Sci. 20, 5034.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dar W.A., Sullivan E., Bynon J.S., Eltzschig H., Ju C. 2019. Ischaemia reperfusion injury in liver transplantation: Cellular and molecular mechanisms. Liver Int. 39, 788–801.

Article  PubMed  PubMed Central  Google Scholar 

Chen Z., Tian R., She Z., Cai J., Li H. 2020. Role of oxidative stress in the pathogenesis of nonalcoholic fatty liver disease. Free Radical Biol. Med. 152, 116–141.

Article  CAS  Google Scholar 

Wu M.Y., Yiang G.T., Liao W.T., Tsai A.P.Y., Cheng Y.L., Cheng P.W., Li C.Y., Li C.J. 2018. Current mechanistic concepts in ischemia and reperfusion injury. Cell Physiol. Biochem. 46, 1650–1667.

Article  CAS  PubMed  Google Scholar 

Eltzschig H.K., Eckle T. 2011. Ischemia and reperfusion—from mechanism to translation. Nat. Med. 17, 1391–1401.

Article  CAS  PubMed  Google Scholar 

Mishra P.K., Adameova A., Hill J.A., Baines C.P., Kang P.M., Downey J.M., Narula J., Takahashi M., Abbate A., Piristine H.C., Kar S., Su S., Higa J.K., Kawasaki N.K., Matsui T. 2019. Guidelines for evaluating myocardial cell death. Am. J. Physiol., Heart Circ. Physiol. 317, H891–H922.

Article  CAS  PubMed  Google Scholar 

Bauer T.M., Murphy E. 2020. Role of mitochondrial calcium and the permeability transition pore in regulating cell death. Circ. Res. 126, 280–293.

Article  CAS  PubMed  PubMed Central  Google Scholar 

van Golen R.F., Reiniers M.J., Marsman G., Alles L.K., van Rooyen D.M., Petri B., Van der Mark V.A., van Beek A.A., Meijer B., Maas M.A., Zeerleder S., Verheij J., Farrell G.C., Luken B.M., Teoh N.C., van Gulik T.M., Murphy M.P., Heger M. 2019. The damage-associated molecular pattern HMGB1 is released early after clinical hepatic ischemia/reperfusion. Biochim. Biophys. Acta, Mol. Basis Dis. 1865, 1192–1200.

Article  CAS  Google Scholar 

Gong L., Pan Q., Yang N. 2020. Autophagy and inflammation regulation in acute kidney injury. Front. Physiol. 11, 576463.

Article  PubMed  PubMed Central  Google Scholar 

Vorobjeva N.V. 2020. Neutrophil extracellular traps: New aspects. Moscow Univ. Biol. Sci. Bull. 75, 173–188.

Article  CAS  PubMed  Google Scholar 

Kim S.W., Lee H., Lee H.K., Kim I.D., Lee J.K. 2019. Neutrophil extracellular trap induced by HMGB1 exacerbates damages in the ischemic brain. Acta Neuropathol. Commun. 7, 94.

Article  PubMed  Google Scholar 

Raedschelders K., Ansley D.M., Chen D.D.Y. 2012. The cellular and molecular origin of reactive oxygen species generation during myocardial ischemia and reperfusion. Pharmacol. Ther. 133, 230–255.

Article  CAS  PubMed  Google Scholar 

Zhou T., Chuang C.C., Zuo L. 2015. Molecular characterization of reactive oxygen species in myocardial ischemia−reperfusion injury. Biomed. Res. Int. 2015, 864946.

Article  PubMed  PubMed Central  Google Scholar 

Bugger H., Pfeil K. 2020. Mitochondrial ROS in myocardial ischemia reperfusion and remodeling. Biochim. Biophys. Acta, Mol. Basis Dis. 1866, 165768.

Article  CAS  Google Scholar 

Matsushima S., Sadoshima J. 2022. Yin and Yang of NADPH oxidases in myocardial ischemia–reperfusion. Antioxidants. 11, 1069.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lambeth J.D., Krause K.H., Clark R.A. 2008. NOX enzymes as novel targets for drug development. Semin. Immunopathol. 30, 339–363.

Article  CAS  PubMed  Google Scholar 

Loukogeorgakis S.P., Van Den Berg M.J., Sofat R., Nitsch D., Charakida M., Haiyee B., De Groot E., MacAllister R.J., Kuijpers T.W., Deanfield J.E. 2010. Role of NADPH oxidase in endothelial ischemia/reperfusion injury in humans. Circulation. 121, 2310–2316.

Article  CAS  PubMed  Google Scholar 

Nakagiri A., Sunamoto M., Murakami M. 2007. NA-DPH oxidase is involved in ischaemia/reperfusion-induced damage in rat gastric mucosa via ROS production—role of NADPH oxidase in rat stomachs. Inflammopharmacology. 15, 278–281.

Article  CAS  PubMed  Google Scholar 

Förstermann U., Sessa W.C. 2012. Nitric oxide synthases: Regulation and function. Eur. Heart J. 33, 829–837.

Article  PubMed  Google Scholar 

Xu F., Mack C.P., Quandt K.S., Shlafer M., Massey V., Hultquist D.E. 1993. Pyrroloquinoline quinone acts with flavin reductase to reduce ferryl myoglobin in vitro and protects isolated heart from reoxygenation injury. Biochem. Biophys. Res. Commun. 193, 434–439.

Article  CAS  PubMed  Google Scholar 

McLeod L.L., Alayash A.I. 1999. Detection of a ferrylhemoglobin intermediate in an endothelial cell model after hypoxia−reoxygenation. Am. J. Physiol., Heart Circ. Physiol. 277, H92–H99.

Article  CAS  Google Scholar 

Ruan Y., Zeng J., Jin Q., Chu M., Ji K., Wang Z., Li L. 2020. Endoplasmic reticulum stress serves an important role in cardiac ischemia/reperfusion injury (review). Exp. Ther. Med. 20, 260.

Article  Google Scholar 

Zhou H., Toan S. 2020. Pathological roles of mitochondrial oxidative stress and mitochondrial dynamics in cardiac microvascular ischemia/reperfusion injury. Biomolecules. 10, 85.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lipskaia L., Keuylian Z., Blirando K., Mougenot N., Jacquet A., Rouxel C., Sghairi H., Elaib Z., Blaise R., Adnot S., Hajjar R.J., Chemaly E.R., Limon I., Bobe R. 2014. Expression of Sarco (Endo) plasmic reticulum calcium ATPase (SERCA) system in normal mouse cardiovascular tissues, heart failure and atherosclerosis. Biochim. Biophys. Acta. 1843, 2705.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang R., Wang M., He S., Sun G., Sun X. 2020. Targeting calcium homeostasis in myocardial ischemia/reperfusion injury: An overview of regulatory mechanisms and therapeutic reagents. Front. Pharmacol. 11, 1–14.

Google Scholar 

Adams C.J., Kopp M.C., Larburu N., Nowak P.R., Ali M.M.U. 2019. Structure and molecular mechanism of ER stress signaling by the unfolded protein response signal activator IRE1. Front. Mol. Biosci. 6, 1–12.

Article  Google Scholar 

Kaul S., Methner C., Cao Z., Mishra A. 2022. Mechanisms of the “No-Reflow” phenomenon after acute myocardial infarction. JACC Basic Transl. Sci. 8, 204–220.

Article  PubMed  PubMed Central  Google Scholar 

Edwards N.J., Hwang C., Marini S., Pagani C.A., Spreadborough P.J., Rowe C.J., Yu P., Mei A., Visser N., Li S., Hespe G.E., Huber A.K., Strong A.L., Shelef M.A., Knight J.S., Davis T.A., Levi B. 2020. The role of neutrophil extracellular traps and TLR signaling in skeletal muscle ischemia reperfusion injury. FASEB J. 34, 15753–15770.

Article  CAS  PubMed  Google Scholar 

Arlati S. 2019. Pathophysiology of acute illness and injury. In Operative Techniques and Recent Advances in Acute Care and Emergency Surgery. Cham: Springer, 11–42.

Google Scholar 

Granger D.N., Kvietys P.R. 2015. Reperfusion injury and reactive oxygen species: The evolution of a concept. Redox Biol. 6, 524–551.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tennant D., Howell N.J. 2014. The role of HIFs in ischemia−reperfusion injury. Hypoxia. 2, 107–115.

Article  PubMed  PubMed Central  Google Scholar 

Silva-Islas C.A., Maldonado P.D. 2018. Canonical and non-canonical mechanisms of Nrf2 activation. Pharmacol. Res. 134, 92–99.

Article  CAS  PubMed  Google Scholar 

Toth R., Warfel N. 2017. Strange bedfellows: nuclear factor, erythroid 2-like 2 (Nrf2) and hypoxia-inducible factor 1 (HIF-1) in tumor hypoxia. Antioxidants. 6, 27.

Article  PubMed  PubMed Central  Google Scholar 

Gallagher B.M., Phelan S.A. 2007. Investigating transcriptional regulation of Prdx6 in mouse liver cells. Free Radical Biol. Med. 42, 1270–1277.

Article  CAS  Google Scholar 

Park Y.-H., Kim S.-U., Kwon T.-H., Kim J.-M., Song I.-S., Shin H.-J., Lee B.-K., Bang D.-H., Lee S.-J., Lee D.-S., Chang K.-T., Kim B.-Y., Yu D.-Y. 2016. Peroxiredoxin II promotes hepatic tumorigenesis through cooperation with Ras/Forkhead box M1 signaling pathway. Oncogene. 35, 3503–3513.

Article  CAS  PubMed  Google Scholar 

Guo Q.J., Mills J.N., Bandurraga S.G., Nogueira L.M., Mason N.J., Camp E.R., Larue A.C., Turner D.P., Findlay V.J. 2013. MicroRNA-510 promotes cell and tumor growth by targeting peroxiredoxin1 in breast cancer. Breast Cancer Res. 15, R70.

Article  PubMed  PubMed Central  Google Scholar 

Hopkins B.L.,

Comments (0)

No login
gif