Malakar A.K., Choudhury D., Halder B., Paul P., Uddin A., Chakraborty S. 2019. A review on coronary artery disease, its risk factors, and therapeutics. J. Cell Physiol. 234 (10), 16812–16823. https://doi.org/10.1002/jcp.28350
Article CAS PubMed Google Scholar
Wan Q., Qian S., Huang Y., Zhang Y., Peng Z., Li Q., Shu B., Zhu L., Wang M. 2020. Drug discovery for coronary artery disease. Adv. Exp. Med. Biol. 1177, 297–339.
Article CAS PubMed Google Scholar
Hunt S.A., Abraham W.T., Chin M.H., Feldman A.M., Francis G.S., Ganiats T.G., Jessup M., Konstam M.A., Mancini D.M., Michl K., Oates J.A., Rahko P.S., Silver M.A., Stevenson L.W., Yancy C.W. 2009. 2009 Focused update incorporated into the ACC/AHA 2005 guidelines for the diagnosis and management of heart failure in adults: A report of the American college of cardiology foundation/American heart association task force on practice guidelines developed in collaboration with the International society for heart and lung transplantation. J. Am. Coll. Cardiol. 53 (15), e1–e90. https://doi.org/10.1016/j.jacc.2008.11.013
Netto J., Teren A., Burkhardt R., Willenberg A., Beutner F., Henger S., Schuler G., Thiele H., Isermann B., Thiery J., Scholz M., Kaiser T. 2022. Biomarkers for non-invasive stratification of coronary artery disease and prognostic impact on long-term survival in patients with stable coronary heart disease. Nutrients. 14 (16), 3433. https://doi.org/10.3390/nu14163433
Article CAS PubMed PubMed Central Google Scholar
Parsanathan R., Jain S.K. 2020. Novel invasive and noninvasive cardiac-specific biomarkers in obesity and cardiovascular diseases. Metab. Syndr. Relat. Disord. 18 (1), 10–30. https://doi.org/10.1089/met.2019.0073
Article PubMed PubMed Central Google Scholar
Cardona-Monzonís A., García-Giménez J.L., Mena-Mollá S., Pareja-Galeano H., de la Guía-Galipienso F., Lippi G., Pallardó F.V., Sanchis-Gomar F. 2020. Non-coding RNAs and coronary artery disease. In Advances in Experimental Medicine and Biology. Vol. 1229. Xiao J., Ed. Singapore: Springer, 273–285. https://doi.org/10.1007/978-981-15-1671-9_16
Poller W., Dimmeler S., Heymans S., Zeller T., Haas J., Karakas M., Leistner D.M., Jakob P., Nakagawa S., Blankenberg S., Engelhardt S., Thum T., Weber C., Meder B., Hajjar R., Landmesser U. 2018. Non-coding RNAs in cardiovascular diseases: Diagnostic and therapeutic perspectives. Eur. Heart J. 39 (29), 2704–2716. https://doi.org/10.1093/eurheartj/ehx165
Article CAS PubMed Google Scholar
Adams V. 2019. Assessment of micro ribonucleic acids after exercise: Is this the future to detect coronary artery disease at its early stage? Eur. J. Prev. Cardiol. 26 (4), 346–347. https://doi.org/10.1177/2047487318811958
Zou L., Ma X., Lin S., Wu B., Chen Y., Peng C. 2019 Long noncoding RNA-MEG3 contributes to myocardial ischemia-reperfusion injury through suppression of MIR-7-5p expression. Biosci. Rep. 39 (8), BSR20190210. https://doi.org/10.1042/BSR20190210
Article CAS PubMed PubMed Central Google Scholar
Piccoli M.T., Gupta S.K., Viereck J., Foinquinos A., Samolovac S., Kramer F.L., Garg A., Remke J., Zimmer K., Batkai S., Thum T. 2017. Inhibition of the cardiac fibroblast-enriched lncRNA Meg3 prevents cardiac fibrosis and diastolic dysfunction. Circ. Res. 121 (5), 575–583. https://doi.org/10.1161/CIRCRESAHA.117.310624
Article CAS PubMed Google Scholar
Zhang J., Liang Y., Huang X., Guo X., Liu Y., Zhong J., Yuan J. 2019. STAT3-induced upregulation of lncRNA MEG3 regulates the growth of cardiac hypertrophy through miR-361-5p/HDAC9 axis. Sci. Rep. 9 (1), 460. https://doi.org/10.1038/s41598-018-36369-1
Article CAS PubMed PubMed Central Google Scholar
Wu Z., He Y., Li D., Fang X., Shang T., Zhang H., Zheng X. 2017. Long noncoding RNA MEG3 suppressed endothelial cell proliferation and migration through regulating miR-21. Am. J. Transl. Res. 9 (7), 3326–3335.
CAS PubMed PubMed Central Google Scholar
Li F.P., Lin D.Q., Gao L.Y. 2018. LncRNA TUG1 promotes proliferation of vascular smooth muscle cell and atherosclerosis through regulating miRNA-21/PTEN axis. Eur. Rev. Med. Pharmacol. Sci. 22 (21), 7439–7447. https://doi.org/10.26355/eurrev-201811-16284
Guo Y., Sun Z., Chen M., Lun J. 2021. LncRNA TUG1 regulates proliferation of cardiac fibroblast via the miR-29b-3p/TGF-β1 axis. Front. Cardiovasc. Med. 8, 646806. https://doi.org/10.3389/fcvm.2021.646806
Article CAS PubMed PubMed Central Google Scholar
Zhang G., Ni X. 2021. Knockdown of TUG1 rescues cardiomyocyte hypertrophy through targeting the miR-497/ MEF2C axis. Open Life Sci. 16 (1), 242–251. https://doi.org/10.1515/biol-2021-0025
Article CAS PubMed PubMed Central Google Scholar
Foulds C.E., Tsimelzon A., Long W., Le A., Tsai S.Y., Tsai M.J., O’Malley B.W. 2010. Research resource: Expression profiling reveals unexpected targets and functions of the human steroid receptor RNA activator (SRA) gene. Mol. Endocrinol. 24 (5), 1090–1105. https://doi.org/10.1210/me.2009-0427
Article CAS PubMed PubMed Central Google Scholar
Ren S., Zhang Y., Li B., Bu K., Wu L., Lu Y., Lu Y., Qiu Y. 2019. Downregulation of lncRNA‑SRA participates in the development of cardiovascular disease in type II diabetic patients. Exp. Ther. Med. 17 (5), 3367–3372. https://doi.org/10.3892/etm.2019.7362
Article CAS PubMed PubMed Central Google Scholar
Yang S., Sun J. 2018. LncRNA SRA deregulation contributes to the development of atherosclerosis by causing dysfunction of endothelial cells through repressing the expression of adipose triglyceride lipase. Mol. Med. Rep. 18 (6), 5207–5214. https://doi.org/10.3892/mmr.2018.9497
Article CAS PubMed Google Scholar
Huang Z., Shi J., Gao Y., Cui C., Zhang S., Li J., Zhou Y., Cui Q. 2019. HMDD v3.0: A database for experimentally supported human microRNA-disease associations. Nucleic Acids Res. 47 (D1), D1013–D1017. https://doi.org/10.1093/nar/gky1010
Article CAS PubMed Google Scholar
Huang H.Y., Lin Y.C., Li J., Huang K.Y., Shrestha S., Hong H.C., Tang Y., Chen Y.G., Jin C.N., Yu Y., Xu J.T., Li Y.M., Cai X.X., Zhou Z.Y., Chen X.H., Pei Y.Y., Hu L., Su J.J., Cui S.D., Wang F., Xie Y.Y., Ding S.Y., Luo M.F., Chou C.H., Chang N.W., Chen K.W., Cheng Y.H., Wan X.H., Hsu W.L., Lee T.Y., Wei F.X., Huang H.D. 2020. MiRTarBase 2020: Updates to the experimentally validated microRNA-target interaction database. Nucleic Acids Res. 48 (D1), D148–D154. https://doi.org/10.1093/nar/gkz896
Article CAS PubMed Google Scholar
Chang L., Zhou G., Soufan O., Xia J. 2020. miRNet 2.0: Network-based visual analytics for miRNA functional analysis and systems biology. Nucleic Acids Res. 48 (W1), W244–W251. https://doi.org/10.1093/nar/gkaa467
Article CAS PubMed PubMed Central Google Scholar
Metsalu T., Vilo J. 2015. ClustVis: A web tool for visualizing clustering of multivariate data using Principal Component Analysis and heatmap. Nucleic Acids Res. 43 (W1), W566–W570. https://doi.org/10.1093/nar/gkv468
Article CAS PubMed PubMed Central Google Scholar
Shannon P., Markiel A., Ozier O., Baliga N.S., Wang J.T., Ramage D., Amin N., Schwikowski B., Ideker T. 2003. Cytoscape: A software environment for integrated models. Genome Res. 13 (11), 2498‒2504. https://doi.org/10.1101/gr.1239303
Article CAS PubMed PubMed Central Google Scholar
Livak K.J., Schmittgen T.D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCΤ method. Methods. 25 (4), 402–408. https://doi.org/10.1006/meth.2001.1262
Article CAS PubMed Google Scholar
Saygili H., Bozgeyik I., Yumrutas O., Akturk E., Bagis H. 2021. Differential expression of long noncoding RNAs in patients with coronary artery disease. Mol. Syndromol. 12 (6), 372–378. https://doi.org/10.1159/000517077
Article CAS PubMed PubMed Central Google Scholar
Bai Y., Zhang Q., Su Y., Pu Z., Li K. 2019. Modulation of the proliferation/apoptosis balance of vascular smooth muscle cells in atherosclerosis by lncRNA-MEG3 via regulation of miR-26a/smad1 axis. Int. Heart J. 60 (2), 444–450. https://doi.org/10.1536/IHJ.18-195
Article CAS PubMed Google Scholar
Wu H., Zhao Z.A., Liu J., Hao K., Yu Y., Han X., Li J., Wang Y., Lei W., Dong N., Shen Z., Hu S. 2018. Long noncoding RNA Meg3 regulates cardiomyocyte apoptosis in myocardial infarction. Gene Ther. 25 (8), 511–523. https://doi.org/10.1038/s41434-018-0045-4
Article CAS PubMed Google Scholar
Su Q., Liu Y., Lv X.W., Dai R.X., Yang X.H., Kong B.H. 2020. LncRNA TUG1 mediates ischemic myocardial injury by targeting miR-132-3p/HDAC3 axis. Am. J. Physiol. Heart Circ. Physiol. 318 (2), H332–H344. https://doi.org/10.1152/ajpheart.00444.2019
Article CAS PubMed Google Scholar
Yan H.Y., Bu S.Z., Zhou W.B., Mai Y.F. 2018. TUG1 promotes diabetic atherosclerosis by regulating proliferation of endothelial cells via Wnt pathway. Eur. Rev. Med. Pharmacol. Sci. 22 (20), 6922–6929.
Kumar D., Narang R., Sreenivas V., Rastogi V., Bhati-a J., Saluja D., Srivastava K. 2020. Circulatory miR-133b and miR-21 as novel biomarkers in early prediction and diagnosis of coronary artery disease. Genes (Basel) . 11 (2), 164. https://doi.org/10.3390/genes11020164
Article CAS PubMed PubMed Central Google Scholar
Ren J., Zhang J., Xu N., Han G., Geng Q., Song J., Li S., Zhao J., Chen H. 2013. Signature of circulating MicroRNAs As potential biomarkers in vulnerable coronary artery disease. PLoS One. 8 (12), e80738. https://doi.org/10.1371/journal.pone.0080738
Comments (0)